精英家教網 > 高中數學 > 題目詳情

【題目】如圖1,四棱錐中,底面,面是直角梯形,為側棱上一點.該四棱錐的俯視圖和側(左)視圖如圖2所示.

1)證明:平面;

2)線段上是否存在點,使所成角的余弦值為?若存在,找到所有符合要求的點,并求的長;若不存在,說明理由.

【答案】1,證得.又因為平面推出,

,所以平面

2)點位于點處,此時;或中點處,此時.

【解析】

試題(1)【方法一】證明:由俯視圖可得,,所以

又因為平面,所以

,所以平面

1)【方法二】證明:因為平面,,建立如圖所示

的空間直角坐標系 中,易得,所以,

因為 所以,.由俯視圖和左視圖可得:

所以

因為,所以

又因為平面,所以,又

所以平面

2)解:線段上存在點,使所成角的余弦值為

證明如下:設,其中

所以,

要使所成角的余弦值為,則有,

所以,解得,均適合

故點位于點處,此時;或中點處,此時,

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知拋物線的焦點為,點在拋物線上,,直線過點且與拋物線交于,兩點.

(1)求拋物線的方程及點的坐標

(2)的最大值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】[2019·吉林期末]一個袋中裝有6個大小形狀完全相同的球,球的編號分別為1,2,3,4,5,6.

(1)從袋中隨機抽取兩個球,求取出的球的編號之和為6的概率;

(2)先后有放回地隨機抽取兩個球,兩次取的球的編號分別記為,求的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】正四面體中,的中點,是棱上一動點,的最小值為,則該四面體內切球的體積為_____.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】[選修4-4:坐標系與參數方程]

在直角坐標系中,曲線的參數方程為是參數),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求曲線的普通方程和曲線的直角坐標方程;

(2)設曲線經過伸縮變換得到曲線,是曲線上任意一點,求點到曲線的距離的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業為了解年廣告費(單位:萬元)對年銷售額(單位:萬元)的影響,對近4年的年廣告費和年銷售額的數據作了初步整理,得到下面的表格:

年廣告費/萬元

2

3

4

5

年銷售額/萬元

26

39

49

54

(1)用年廣告費作解釋變量,年銷售額作預報變量,在所給坐標系中作出這些數據的散點圖,并判斷哪一個更適合作為年銷售額關于年廣告費的回歸方程類型(給出判斷即可,不必說明理由).

(2)根據(1)的判斷結果及表中數據,建立關于的回歸方程.

(3)已知商品的年利潤的關系為.根據(2)的結果,計算年廣告費約為何值時(小數點后保留兩位),年利潤的預報值最大.附:對于一組數據,,…,,其回歸直線的斜率和截距的最小二乘估計分別為,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《中華人民共和國道路交通安全法》第47條的相關規定:機動車行經人行道時,應當減速慢行;遇行人正在通過人行道,應當停車讓行,俗稱“禮讓斑馬線”, 《中華人民共和國道路交通安全法》第90條規定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監控設備所抓拍的5個月內駕駛員“禮讓斑馬線”行為統計數據:

月份

1

2

3

4

5

違章駕駛員人數

120

105

100

90

85

(1)請利用所給數據求違章人數與月份之間的回歸直線方程;

(2)預測該路口9月份的不“禮讓斑馬線”違章駕駛員人數.

參考公式: , .

參考數據: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某工廠在生產產品時需要用到長度為型和長度為型兩種鋼管.工廠利用長度為的鋼管原材料,裁剪成若干型和型鋼管,假設裁剪時損耗忽略不計,裁剪后所剩廢料與原材料的百分比稱為廢料率.

(1)要使裁剪的廢料率小于,共有幾種方案剪裁?請寫出每種方案中分別被裁剪型鋼管和型鋼管的根數;

(2)假設一根型鋼管和一根型鋼管能成為一套毛胚,假定只能按(1)中的那些方案裁剪,若工廠需要生產套毛胚,則至少需要采購多少根長度為的鋼管原材料?最終的廢料率為多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(Ⅰ)求函數的單調區間與極值;

(Ⅱ)若不等式對任意恒成立,求實數的取值范圍;

(Ⅲ)求證:.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视