【題目】如圖某幾何體的三視圖是直角邊長為1的三個等腰直角三角形,則該幾何體的外接球的表面積為( )
A.
B.
C.
D.3π
【答案】D
【解析】解:∵該幾何體的三視圖是直角邊長為1的三個等腰直角三角形,∴該幾何體為從底面直角頂點出發的三條棱兩兩垂直的三棱錐,可將其補成一個邊長為1的正方體,
則該幾何體的外接球就是補成的正方體的外接球,
∵補成的正方體的對角線長l= =
為其外接球的直徑d,
∴外接球的表面積S=πd2=3π,
即該幾何體的外接球的表面積為3π,
故選:D.
【考點精析】本題主要考查了由三視圖求面積、體積和球內接多面體的相關知識點,需要掌握求體積的關鍵是求出底面積和高;求全面積的關鍵是求出各個側面的面積;球的內接正方體的對角線等于球直徑;長方體的外接球的直徑是長方體的體對角線長才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,平面A1BC⊥側面A1ABB1 , 且AA1=AB=2.
(1)求證:AB⊥BC;
(2)若直線AC與平面A1BC所成的角為 ,求銳二面角A﹣A1C﹣B的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在Z上的函數f(x),對任意x,y∈Z,都有f(x+y)+f(x﹣y)=4f(x)f(y)且f(1)= ,則f(0)+f(1)+f(2)+…+f(2017)= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場進行有獎促銷活動,顧客購物每滿500元,可選擇返回50元現金或參加一次抽獎,抽獎規則如下:從1個裝有6個白球、4個紅球的箱子中任摸一球,摸到紅球就可獲得100元現金獎勵,假設顧客抽獎的結果相互獨立.
(Ⅰ)若顧客選擇參加一次抽獎,求他獲得100元現金獎勵的概率;
(Ⅱ)某顧客已購物1500元,作為商場經理,是希望顧客直接選擇返回150元現金,還是選擇參加3次抽獎?說明理由;
(Ⅲ)若顧客參加10次抽獎,則最有可能獲得多少現金獎勵?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某海濱城市附近海面有一臺風,據監測,當前臺風中心位于城市A(看做一點)的東偏南θ角方向 ,300km的海面P處,并以20km/h的速度向西偏北45°方向移動.臺風侵襲的范圍為圓形區域,當前半徑為60km,并以10km/h的速度不斷增大.
(1)問10小時后,該臺風是否開始侵襲城市A,并說明理由;
(2)城市A受到該臺風侵襲的持續時間為多久?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖的程序框圖表示的算法中,輸入三個實數a,b,c,要求輸出的x是這三個數中最大的數,那么在空白的判斷框中,應該填入( )
A.x>c
B.c>x
C.c>b
D.c>a
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com