【題目】已知函數f(x)=|x+3|﹣m+1,m>0,f(x﹣3)≥0的解集為(﹣∞,﹣2]∪[2,+∞). (Ⅰ)求m的值;
(Ⅱ)若x∈R,f(x)≥|2x﹣1|﹣t2+ t成立,求實數t的取值范圍.
【答案】解:(I)∵函數f(x)=|x+3|﹣m+1,m>0, f(x﹣3)≥0的解集為(﹣∞,﹣2]∪[2,+∞).
所以f(x﹣3)=|x|﹣m+1≥0,
所以|x|≥m﹣1的解集為為(﹣∞,﹣2]∪[2,+∞).
所以m﹣1=2,
所以m=3;
(II)由(I)得f(x)=|x+3|﹣2
∵x∈R,f(x)≥|2x﹣1|﹣t2+ t 成立
即x∈R,|x+3|﹣|2x﹣1|≥﹣t2+ t+2成立
令g(x)=|x+3|=|2x﹣1|=
故g(x)max=g( )=
則有 |≥﹣t2+
t+2,即|2t2﹣5t+3≥0.
解得t≤1或t≥ ,
∴實數t的取值范圍是t≤1或t≥
【解析】(1)將不等式轉化為|x|≥m﹣1,根據其解集情況,確定m;(2)將不等式轉化為x∈R,|x+3|﹣|2x﹣1|≥﹣t2+ t+2成立,左邊構造函數,只要求出其最大值,得到關于t的不等式解之即可.
【考點精析】通過靈活運用絕對值不等式的解法,掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規律:關鍵是去掉絕對值的符號即可以解答此題.
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足a1=1,an+1=3an+1.
(1)證明{an+ }是等比數列,并求{an}的通項公式;
(2)證明: +
+…+
<
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線C1的參數方程為 (a>b>0,φ為參數),以Ο為極點,x軸的正半軸為極軸建立極坐標系,曲線C2是圓心在極軸上且經過極點的圓,已知曲線C1上的點M(2,
)對應的參數φ=
.θ=
與曲線C2交于點D(
,
).
(1)求曲線C1 , C2的直角坐標方程;
(2)A(ρ1 , θ),B(ρ2 , θ+ )是曲線C1上的兩點,求
+
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關,現對100名五年級學生進行了問卷調查,得到如下2×2列聯表,平均每天喝500ml以上為常喝,體重超過50kg為肥胖.
不常喝 | 常喝 | 合計 | |
肥胖 | x | y | 50 |
不肥胖 | 40 | 10 | 50 |
合計 | A | B | 100 |
現從這100名兒童中隨機抽取1人,抽到不常喝碳酸飲料的學生的概率為
(1)求2×2列聯表中的數據x,y,A,B的值;
(2)根據列聯表中的數據繪制肥胖率的條形統計圖,并判斷常喝碳酸飲料是否影響肥胖?
(3)是否有99.9%的把握認為肥胖與常喝碳酸飲料有關?說明你的理由. 附:參考公式:K2= ,其中n=a+b+c+d.
臨界值表:
P(K2≥k) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】a,b為正數,給出下列命題:
①若a2﹣b2=1,則a﹣b<1;
②若 ﹣
=1,則a﹣b<1;
③ea﹣eb=1,則a﹣b<1;
④若lna﹣lnb=1,則a﹣b<1.
期中真命題的有 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,M,N分別是AB,PC的中點,若ABCD是平行四邊形.
(1)求證:MN∥平面PAD.
(2)若PA=AD=2a,MN與PA所成的角為30°.求MN的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在銳角三角形ABC 中,角 A,B,C 的對邊分別為 a,b,c.若a=2bsinC,則tanA+tanB+tanC的最小值是( )
A.4
B.
C.8
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com