精英家教網 > 高中數學 > 題目詳情

【題目】將函數f(x)=sin3x+cos3x的圖象沿x軸向左平移個單位后,得到一個偶函數的圖象,則的一個可能取值為(
A.
B.
C.
D.0

【答案】A
【解析】解:f(x)=sin3x+cos3x= , 沿x軸向左平移φ個單位后,得y= ,
由y= 為偶函數,可得3φ+ =k ,k∈Z.
∴φ=
取k=0,得φ=
故選:A.
【考點精析】本題主要考查了函數y=Asin(ωx+φ)的圖象變換的相關知識點,需要掌握圖象上所有點向左(右)平移個單位長度,得到函數的圖象;再將函數的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數的圖象;再將函數的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數的圖象才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)是定義在R上的偶函數,且當x≤0時,f(x)=x2+2x.
(1)現已畫出函數f(x)在y軸左側的圖象,如圖所示,請補全函數f(x)的圖象,并根據圖象寫出函數f(x)(x∈R)的遞增區間;

(2)寫出函數f(x)(x∈R)的值域;
(3)寫出函數f(x)(x∈R)的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=2sinxsin(x+3φ)是奇函數,其中φ∈(0, ),則函數g(x)=cos(2x﹣φ)的圖象(
A.關于點( ,0)對稱
B.可由函數f(x)的圖象向右平移 個單位得到
C.可由函數f(x)的圖象向左平移 個單位得到
D.可由函數f(x)的圖象向左平移 個單位得到

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|x+3|﹣m+1,m>0,f(x﹣3)≥0的解集為(﹣∞,﹣2]∪[2,+∞). (Ⅰ)求m的值;
(Ⅱ)若x∈R,f(x)≥|2x﹣1|﹣t2+ t成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數y=﹣sin(ωx+φ)(ω>0,φ∈(﹣ ))的一條對稱軸為x= ,一個對稱中心為( ,0),在區間[0, ]上單調.
(1)求ω,φ的值;
(2)用描點法作出y=sin(ωx+φ)在[0,π]上的圖象.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=aln(x+2)﹣x2在(0,1)內任取兩個實數p,q,且p>q,若不等式 恒成立,則實數a的取值范圍是(
A.(﹣∞,24]
B.(﹣∞,12]
C.[12,+∞)
D.[24,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若關于x的不等式|3x+2|+|3x﹣1|﹣t≥0的解集為R,記實數t的最大值為a.
(1)求a;
(2)若正實數m,n滿足4m+5n=a,求 的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=a(x+ )+blnx(其中a,b∈R)
(Ⅰ)當b=﹣4時,若f(x)在其定義域內為單調函數,求a的取值范圍;
(Ⅱ)當a=﹣1時,是否存在實數b,使得當x∈[e,e2]時,不等式f(x)>0恒成立,如果存在,求b的取值范圍,如果不存在,說明理由(其中e是自然對數的底數,e=2.71828…).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在平面直角坐標系 中,已知橢圓 的離心率為 ,C為橢圓上位于第一象限內的一點.

(1)若點 的坐標為 ,求a,b的值;
(2)設A為橢圓的左頂點,B為橢圓上一點,且 ,求直線AB的斜率.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视