精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)是定義在R上的偶函數,且當x≤0時,f(x)=x2+2x.
(1)現已畫出函數f(x)在y軸左側的圖象,如圖所示,請補全函數f(x)的圖象,并根據圖象寫出函數f(x)(x∈R)的遞增區間;

(2)寫出函數f(x)(x∈R)的值域;
(3)寫出函數f(x)(x∈R)的解析式.

【答案】
(1)解:根據偶函數的圖象關于y軸對稱,作出函數在R上的圖象,

結合圖象可得函數的增區間為(﹣1,0)、減區間為(1,+∞)


(2)解:結合函數的圖象可得,當x=1,或 x=﹣1時,函數取得最小值為﹣1,

函數沒有最大值,故函數的值域為[﹣1,+∞)


(3)解:當x>0時,﹣x<0,再根據x≤0時,f(x)=x2+2x,

可得f(﹣x)=(﹣x)2+2(﹣x)=x2﹣2x.

再根據函數f(x)為偶函數,可得f(x)=x2﹣2x.

綜上可得,f(x)=


【解析】(1)根據偶函數的圖象關于y軸對稱,作出函數在R上的圖象,結合圖象可得函數的增區.(2)結合函數的圖象可得函數的值域.(3)依據條件求得當x>0時,f(x)的解析式,再依據函數的奇偶性得到f(x)在R上的解析式.
【考點精析】通過靈活運用函數的值域和函數圖象的作法,掌握求函數值域的方法和求函數最值的常用方法基本上是相同的.事實上,如果在函數的值域中存在一個最。ù螅⿺,這個數就是函數的最。ù螅┲担虼饲蠛瘮档淖钪蹬c值域,其實質是相同的;圖象的作法與平移:①據函數表達式,列表、描點、連光滑曲線;②利用熟知函數的圖象的平移、翻轉、伸縮變換;③利用反函數的圖象與對稱性描繪函數圖象即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知圓C的方程為(x﹣3)2+y2=1,圓M的方程為(x﹣3﹣3cosθ)2+(y﹣3sinθ)2=1(θ∈R),過M上任意一點P作圓C的兩條切線PA,PB,切點分別為A、B,則∠APB的最大值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】以平面直角坐標系的原點為極點,x軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的長度單位,已知曲線C1的參數方程為 ,(α為參數,且α∈[0,π)),曲線C2的極坐標方程為ρ=﹣2sinθ.
(1)求C1的極坐標方程與C2的直角坐標方程;
(2)若P是C1上任意一點,過點P的直線l交C2于點M,N,求|PM||PN|的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}滿足a1=1,an+1=3an+1.
(1)證明{an+ }是等比數列,并求{an}的通項公式;
(2)證明: + +…+

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某房地產開發公司計劃在一樓區內建造一個長方形公園ABCD,公園由長方形的休閑區A1B1C1D1(陰影部分)和環公園人行道組成.已知休閑區A1B1C1D1的面積為4000平方米,人行道的寬分別為4米和10米.

(1)若設休閑區的長A1B1=x米,求公園ABCD所占面積S關于x的函數S(x)的解析式;
(2)要使公園所占面積最小,休閑區A1B1C1D1的長和寬該如何設計?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,底面是邊長為2的正三角形,側棱AA1⊥底面ABC,D為AB的中點,且A1D與底面ABC所成角的正切值為2,則三棱錐A1﹣ACD外接球的表面積為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)=x|x﹣a|+2x﹣3,其中a∈R
(1)當a=4,2≤x≤5時,求函數f(x)的最大值和最小值,并寫出相應的x的值.
(2)若f(x)在R上恒為增函數,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,曲線C1的參數方程為 (a>b>0,φ為參數),以Ο為極點,x軸的正半軸為極軸建立極坐標系,曲線C2是圓心在極軸上且經過極點的圓,已知曲線C1上的點M(2, )對應的參數φ= .θ= 與曲線C2交于點D( , ).
(1)求曲線C1 , C2的直角坐標方程;
(2)A(ρ1 , θ),B(ρ2 , θ+ )是曲線C1上的兩點,求 + 的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將函數f(x)=sin3x+cos3x的圖象沿x軸向左平移個單位后,得到一個偶函數的圖象,則的一個可能取值為(
A.
B.
C.
D.0

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视