精英家教網 > 高中數學 > 題目詳情

在打靶訓練中,某戰士射擊一次的成績在9環(包括9環)以上的概率是0.18,在8~9環(包括8環)的概率是0.51,在7~8環(包括7環)的概率是0.15,在6~7環(包括6環)的概率是0.09.計算該戰士在打靶訓練中射擊一次取得8環(包括8環)以上成績的概率和該戰士打靶及格(及格指6環以上包括6環)的概率.

該戰士在打靶訓練中射擊一次取得8環(包括8環)以上成績的概率為0.69;及格的概率為0.93.

解析試題分析:射擊的成績是互斥事件,根據互斥事件的概率加法公式即可求得結果.
試題解析:分別記該戰士的打靶成績在9分以上、在8~9分、在7~8分、在6~7分分別為事件B、C、D、E,這4個事件是彼此互斥的,根據互斥事件的概率加法公式,該戰士的打靶成績在8分以上的概率是
P(BC)=P(B)+P(C)=0.18+0.51=0.69.                         6分
該戰士打靶及格的概率,即成績在6分以上的概率,由公式得
P(BCDE)=P(B)+P(C)+P(D)+P(E)=0.18+0.51+0.15+0.09=0.93.     8分
考點:互斥與對立事件、概率問題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

某高校在202年自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組:第1組[75,80),第2組[80,85), 第3組[85,90),第4組[90,95),第5組[95,100]得到的頻率分布直方圖如圖所示.

(1)分別求第3,4,5組的頻率;
(2)若該校決定在筆試成績高的第3,4,5組中用分層抽樣抽取6名學生進入第二輪面試,
(ⅰ)已知學生甲和學生乙的成績均在第三組,求學生甲和學生乙同時進入第二輪面試的概率;
(ⅱ)學校決定在這6名學生中隨機抽取2名學生接受考官D的面試,設第4組中有名學生被考官D面試,求的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某工科院校對A,B兩個專業的男女生人數進行調查,得到如下的列聯表:

 
 
專業A
 
專業B
 
總計
 
女生
 
12
 
4
 
16
 
男生
 
38
 
46
 
84
 
總計
 
50
 
50
 
100
 
(1)從B專業的女生中隨機抽取2名女生參加某項活動,其中女生甲被選到的概率是多少?
(2)能否在犯錯誤的概率不超過0.05的前提下,認為工科院校中“性別”與“專業”有關系呢?
注:K2
P(K2k0)
 
0.25
 
0.15
 
0.10
 
0.05
 
0.025
 
k0
 
1.323
 
2.072
 
2.706
 
3.841
 
5.024
 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

受轎車在保修期內維修費等因素的影響,企業生產每輛轎車的利潤與該轎車首次出現故障的時間有關.某轎車制造廠生產甲、乙兩種品牌轎車,保修期均為2年.現從該廠已售出的兩種品牌轎車中各隨機抽取50輛,統計數據如下:

品牌


首次出現故
障時間x(年)
0<x≤1
1<x≤2
x>2
0<x≤2
x>2
轎車數量(輛)
2
3
45
5
45
每輛利潤
(萬元)
1
2
3
1.8
2.9
將頻率視為概率,解答下列問題:
(1)從該廠生產的甲品牌轎車中隨機抽取一輛,求其首次出現故障發生在保修期內的概率.
(2)若該廠生產的轎車均能售出,記生產一輛甲品牌轎車的利潤為X1,生產一輛乙品牌轎車的利潤為X2,分別求X1,X2的分布列.
(3)該廠預計今后這兩種品牌轎車銷量相當,由于資金限制,只能生產其中一種品牌的轎車.若從經濟效益的角度考慮,你認為應生產哪種品牌的轎車?說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知二次函數),若是從區間中隨機抽取的一個數,是從區間中隨機抽取的一個數,求方程沒有實數根的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

一中食堂有一個面食窗口,假設學生買飯所需的時間互相獨立,且都是整數分鐘,對以往學生買飯所需的時間統計結果如下:

買飯時間(分)
1
2
3
4
5
頻率
0.1
0.4
0.3
0.1
0.1
從第一個學生開始買飯時計時.
(Ⅰ)求第2分鐘末沒有人買晚飯的概率;
(Ⅱ)估計第三個學生恰好等待4分鐘開始買飯的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

有編號為1,2,3的三個白球,編號為4,5,6的三個黑球,這六個球除編號和顏色外完全相同,現從中任意取出兩個球.
(1)求取得的兩個球顏色相同的概率;
(2)求取得的兩個球顏色不相同的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某商場為吸引顧客消費推出一項促銷活動,促銷規則如下:到該商場購物消費滿100元就可轉動如圖所示的轉盤一次,進行抽獎(轉盤為十二等分的圓盤),滿200元轉兩次,以此類推;在轉動過程中,假定指針停在轉盤的任一位置都是等可能的;若轉盤的指針落在A區域,則顧客中一等獎,獲得10元獎金;若轉盤落在B區域或C區域,則顧客中二等獎,獲得5元獎金;若轉盤指針落在其他區域,則不中獎(若指針停到兩區間的實線處,則重新轉動).若顧客在一次消費中多次中獎,則對其獎勵進行累加.已知顧客甲到該商場購物消費了268元,并按照規則參與了促銷活動.

(1)求顧客甲中一等獎的概率;
(2)記X為顧客甲所得的獎金數,求X的分布列及其數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

一個袋子裝有大小形狀完全相同的9個球,其中5個紅球編號分別為1,2,3,4,5,4個白球編號分別為1,2,3,4,從袋中任意取出3個球.
(1)求取出的3個球編號都不相同的概率;
(2)記X為取出的3個球中編號的最小值,求X的分布列與數學期望.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视