【題目】已知函數,且
.
(1)求函數的極值;
(2)當時,證明:
.
【答案】(1)有極大值
,函數
有極小值
;(2)證明見解析.
【解析】試題分析:(1)求極值,可先求得導數,然后通過解不等式
確定增區間,解不等式
確定減區間,則可得極大值和極小值;(2)要證明此不等式,我們首先研究不等式左邊的函數,記
,求出其導數
,可知
在
上單調遞增,在
上單調遞減,
,這是
時最小值,
,這是
時的最大值,因此要證明題中不等式,可分類,
和
分別證明.
試題解析:(1)依題意,,
故,
令,則
或
; 令
,則
,
故當時,函數
有極大值
,當
時,函數
有極小值
.
(2) 由(1)知,令
,
則,
可知在
上單調遞增,在
上單調遞減,令
.
① 當時,
,所以函數
的圖象在
圖象的上方.
② 當時,函數
單調遞減,所以其最小值為
最大值為2,而
,所以函數
的圖象也在
圖象的上方.
綜上可知,當時,
科目:高中數學 來源: 題型:
【題目】【2014高考課標2理數18】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,
E為PD的中點.
(Ⅰ)證明:PB∥平面AEC;
(Ⅱ)設二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著手機的發展,“微信”越來越成為人們交流的一種方式.某機構對“使用微信交流”的態度進行調查,隨機抽取了50人,他們年齡的頻數分布及對“使用微信交流”贊成人數如下表.
年齡(單位:歲) | ||||||
頻數 | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數 | 5 | 10 | 12 | 7 | 2 | 1 |
(Ⅰ)若以“年齡”45歲為分界點,由以上統計數據完成下面列聯表,并判斷是否有99%的把握認為“使用微信交流”的態度與人的年齡有關;
年齡不低于45歲的人數 | 年齡低于45歲的人數 | 合計 | |
贊成 | |||
不贊成 | |||
合計 |
(Ⅱ)若從年齡在和
的被調查人中按照分層抽樣的方法選取6人進行追蹤調查,并給予其中3人“紅包”獎勵,求3人中至少有1人年齡在
的概率.
參考數據如下:
附臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
的觀測值:
(其中
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=loga(3﹣ax)(a>0,a≠1)
(1)當a=3時,求函數f(x)的定義域;
(2)若g(x)=f(x)﹣loga(3+ax),請判定g(x)的奇偶性;
(3)是否存在實數a,使函數f(x)在[2,3]遞增,并且最大值為1,若存在,求出a的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2﹣2x+k,且log2f(a)=2,f(log2a)=k,a>0,且a≠1.
(1)求a,k的值;
(2)當x為何值時,f(logax)有最小值?求出該最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】閱讀下列材料,回答后面問題:
在2014年12月30日播出的“新聞直播間”節目中,主持人說:“……加入此次亞航失聯航班
被證實失事的話,2014年航空事故死亡人數將達到1320人.盡管如此,航空安全專家還是提醒:飛機仍是相對安全的交通工具.①世界衛生組織去年公布的數據顯示,每年大約有124萬人死于車禍,而即使在航空事故死亡人數最多的一年,也就是1972年,其死亡數字也僅為3346人;②截至2014年9月,每百萬架次中有2.1次(指飛機失事),乘坐汽車的百萬人中其死亡人數在100人左右.”
對上述航空專家給出的①、②兩段表述(劃線部分),你認為不能夠支持“飛機仍是相對安全的交通工具”的所有表述序號為__________,你的理由是__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以下四個命題,其中正確的個數有( )
①由獨立性檢驗可知,有的把握認為物理成績與數學成績有關,某人數學成績優秀,則他有99%的可能物理優秀.
②兩個隨機變量相關性越強,則相關系數的絕對值越接近于1;
③在線性回歸方程中,當解釋變量
每增加一個單位時,預報變量
平均增加0.2個單位;
④對分類變量與
,它們的隨機變量
的觀測值
來說,
越小,“
與
有關系”的把握程度越大.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點A(x1 , f(x1)),B(x2 , f(x2))是函數f(x)=2sin(ωx+φ)(ω>0,﹣ <φ<0)圖象上的任意兩點,且角φ的終邊經過點P(1,﹣
),若|f(x1)﹣f(x2)|=4時,|x1﹣x2|的最小值為
(1)求函數f(x)的解析式;
(2)若方程3[f(x)]2﹣f(x)+m=0在x∈( ,
)內有兩個不同的解,求實數m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com