【題目】已知函數f(x)=x2lnx﹣a(x2﹣1),a∈R,若當x≥1時,f(x)≥0恒成立,則a的取值范圍是( )
A.(﹣∞,﹣1]
B.(﹣∞,0]
C.(﹣∞,1]
D.
【答案】D
【解析】解:由已知,即x≥1時,f(x)min>0,
f′(x)=x(2lnx+1﹣2a),x≥1,
當1﹣2a≥0,即a≤ 時,f′(x)≥0恒成立,
∴f(x)單調增,
∴f(x)min=f(1)=0,即a≤ 時滿足f(x)≥0恒成立;
當1﹣2a<0,即a> 時,由f′(x)=0,得x=
>1,
∴x∈(1, )時,f(x)單調減,即x∈(1,
)時,
∴f(x)<f(1)=0與題設矛盾,
即a> 時,不能滿足f(x)≥0恒成立,
綜上,所求a的取值范圍是a≤ ;
故選:D.
【考點精析】解答此題的關鍵在于理解函數的最大(小)值與導數的相關知識,掌握求函數在
上的最大值與最小值的步驟:(1)求函數
在
內的極值;(2)將函數
的各極值與端點處的函數值
,
比較,其中最大的是一個最大值,最小的是最小值.
科目:高中數學 來源: 題型:
【題目】如圖,設橢圓:
的離心率為
,
分別為橢圓
的左、右頂點,
為右焦點,直線
與
的交點到
軸的距離為
,過點
作
軸的垂線
,
為
上異于點
的一點,以
為直徑作圓
.
(1)求的方程;
(2)若直線與
的另一個交點為
,證明:直線
與圓
相切.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知正三棱柱ABC﹣A1B1C1的,底面邊長是側棱長2倍,D、E是A1C1、AC的中點,則下面判斷不正確的為( )
A.直線A1E∥平面B1DC
B.直線AD⊥平面B1DC
C.平面B1DC⊥平面ACC1A1
D.直線AC與平面B1DC所成的角為60°
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=xlnx,g(x)=﹣x2+ax﹣3.
(1)求函數f(x)在[t,t+2](t>0)上的最小值;
(2)對一切x∈(0,+∞),2f(x)≥g(x)恒成立,求實數a的取值范圍;
(3)證明:對一切x∈(0,+∞),都有lnx> ﹣
成立.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線方程為x2=2py(p>0),其焦點為F,點O為坐標原點,過焦點F作斜率為k(k≠0)的直線與拋物線交于A,B兩點,過A,B兩點分別作拋物線的兩條切線,設兩條切線交于點M.
(1)求 ;
(2)設直線MF與拋物線交于C,D兩點,且四邊形ACBD的面積為 ,求直線AB的斜率k.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com