精英家教網 > 高中數學 > 題目詳情

【題目】隨著我國互聯網信息技術的發展,網絡購物已經成為許多人消費的一種重要方式,某市為了了解本市市民的網絡購物情況,特委托一家網絡公示進行了網絡問卷調查,并從參與調查的10000名網民中隨機抽取了200人進行抽樣分析,得到了下表所示數據:

經常進行網絡購物

偶爾或從不進行網絡購物

合計

男性

50

50

100

女性

60

40

100

合計

110

90

200

(1)依據上述數據,能否在犯錯誤的概率不超過的前提下認為該市市民進行網絡購物的情況與性別有關?

(2)現從所抽取的女性網民中利用分層抽樣的方法再抽取人,從這人中隨機選出人贈送網絡優惠券,求出選出的人中至少有兩人是經常進行網絡購物的概率;

(3)將頻率視為概率,從該市所有的參與調查的網民中隨機抽取人贈送禮物,記經常進行網絡購物的人數為,求的期望和方差.

附:,其中

【答案】(1)見解析;(2)見解析

【解析】試題分析:(1)由列聯表中的數據計算的觀測值,對照臨界值得出結論;(2)利用分層抽樣原理求出所抽取的5名女網民中經常進行網購和偶爾或不進行網購的人數,計算所求的概率值;(3)由列聯表中數據計算經常進行網購的頻率,將頻率視為概率知隨機變量服從次獨立重復實驗的概率模型,計算數學期望與方差的大。

試題解析:(1)由列聯表數據計算.

所以,不能再犯錯誤的概率不超過的前提下認為該市市民網購情況與性別有關.

(2)由題意,抽取的5名女性網民中,經常進行網購的有人,偶爾或從不進行網購的有人,故從這5人中選出3人至少有2人經常進行網購的概率是.

(3)由列聯表可知,經常進行網購的頻率為.

由題意,從該市市民中任意抽取1人恰好是經常進行網購的概率是.

由于該市市民數量很大,故可以認為.

所以,,.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,公園里有一湖泊,其邊界由兩條線段和以為直徑的半圓弧組成,其中為2百米,若在半圓弧,線段,線段上各建一個觀賞亭,再修兩條棧道,使. 記

(1)試用表示的長;

(2)試確定點的位置,使兩條棧道長度之和最大.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著社會的發展,終身學習成為必要,工人知識要更新,學習培訓必不可少,現某工廠有工人1000名,其中250名工人參加短期培訓(稱為類工人),另外750名工人參加過長期培訓(稱為類工人),從該工廠的工人中共抽查了100名工人,調查他們的生產能力(此處生產能力指一天加工的零件數)得到類工人生產能力的莖葉圖(左圖),類工人生產能力的頻率分布直方圖(右圖).

(1)問類、類工人各抽查了多少工人,并求出直方圖中的;

(2)求類工人生產能力的中位數,并估計類工人生產能力的平均數(同一組中的數據用該組區間的中點值作代表);

(3)若規定生產能力在內為能力優秀,由以上統計數據在答題卡上完成下面的列聯表,并判斷是否可以在犯錯誤概率不超過0.1%的前提下,認為生產能力與培訓時間長短有關.能力與培訓時間列聯表

短期培訓

長期培訓

合計

能力優秀

能力不優秀

合計

參考數據:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】海水養殖場進行某水產品的新、舊網箱養殖方法的產量對比,收獲時各隨機抽取了100個網箱,測量各箱水產品的產量(單位:kg), 其頻率分布直方圖如下:

(1)記A表示事件“舊養殖法的箱產量低于50 kg”,估計A的概率;

(2)填寫下面列聯表,并根據列聯表判斷是否有99%的把握認為箱產量與養殖方法有關:

箱產量<50 kg

箱產量≥50 kg

舊養殖法

新養殖法

(3)根據箱產量的頻率分布直方圖,對這兩種養殖方法的優劣進行比較.

附:

P

0.050 0.010 0.001

k

3.841 6.635 10.828

.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知是棱長為的正方體.

1)求證:平面平面

2)求多面體的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,,

1)當時,求的最大值和最小值;

2)求實數的取值范圍,使在區間上是單調函數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知三棱錐中,側面底面,,則三棱錐外接球的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若在定義域上不單調,求的取值范圍;

(2)設,分別是的極大值和極小值,且,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在如圖所示的幾何體中,平面.

(1)證明:平面;

(2)求平面與平面所成二面角的正弦值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视