【題目】如圖,已知是棱長為
的正方體.
(1)求證:平面平面
;
(2)求多面體的體積.
【答案】(1)見解析;(2).
【解析】
(1)在平面AB1D1找兩條相交直線AB1,AD1分別平行于平面BDC1;
(2)連接D1C,設D1C∩C1D=O,證明D1O為四棱錐D1﹣AB1C1D的高,求出底面積,即可求四棱錐D1﹣AB1C1D的體積.
(1)由已知,在四邊形DBB1D1中,BB1∥DD1且BB1=DD1,
故四邊形DBB1D1為平行四邊形,即D1B1∥DB,
∵D1B1平面DBC1,∴D1B1∥平面DBC1;
同理在四邊形ADC1B1中,AB1∥DC1,
同理AB1∥平面DBC1,
又∵AB1∩D1B1=B1,
∴平面AB1D1∥平面BDC1.
(2)在正方體中,,
又正方體的體積為V=8,
∴所求多面體的體積=8
科目:高中數學 來源: 題型:
【題目】在四棱錐P–ABCD中,ABCD是矩形,PA=AB,E為PB的中點.
(1)若過C,D,E的平面交PA于點F,求證:F為PA的中點;
(2)若平面PAB⊥平面PBC,求證:BC⊥PA.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為推導球的體積公式,劉徽制造了一個牟合方蓋(在一個正方體內作兩個互相垂直的內切圓柱,這兩個圓柱的公共部分叫做牟合方蓋),但沒有得到牟合方蓋的體積.200年后,祖暅給出牟合方蓋的體積計算方法,其核心過程被后人稱為祖暅原理:緣冪勢既同,則積不容異.意思是,夾在兩個平行平面間的兩個幾何體被平行于這兩個平行平面的任意平面所截,如果截面的面積總相等,那么這兩個幾何體的體積也相等.現在截取牟合方蓋的八分之一,它的外切正方體的棱長為1,如圖所示,根據以上信息,則該牟合方蓋的體積為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點,直線
:
,
為平面上的動點,過點
作直線
的垂線,垂足為
,且滿足
.
(1)求動點的軌跡
的方程;
(2)過點作直線
與軌跡
交于
,
兩點,
為直線
上一點,且滿足
,若
的面積為
,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著我國互聯網信息技術的發展,網絡購物已經成為許多人消費的一種重要方式,某市為了了解本市市民的網絡購物情況,特委托一家網絡公示進行了網絡問卷調查,并從參與調查的10000名網民中隨機抽取了200人進行抽樣分析,得到了下表所示數據:
經常進行網絡購物 | 偶爾或從不進行網絡購物 | 合計 | |
男性 | 50 | 50 | 100 |
女性 | 60 | 40 | 100 |
合計 | 110 | 90 | 200 |
(1)依據上述數據,能否在犯錯誤的概率不超過的前提下認為該市市民進行網絡購物的情況與性別有關?
(2)現從所抽取的女性網民中利用分層抽樣的方法再抽取人,從這
人中隨機選出
人贈送網絡優惠券,求出選出的
人中至少有兩人是經常進行網絡購物的概率;
(3)將頻率視為概率,從該市所有的參與調查的網民中隨機抽取人贈送禮物,記經常進行網絡購物的人數為
,求
的期望和方差.
附:,其中
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年2月22日,在韓國平昌冬奧會短道速滑男子米比賽中,中國選手武大靖以連續打破世界紀錄的優異表現,為中國代表隊奪得了本屆冬奧會的首枚金牌,也創造了中國男子冰上競速項目在冬奧會金牌零的突破.根據短道速滑男子
米的比賽規則,運動員自出發點出發進入滑行階段后,每滑行一圈都要依次經過
個直道與彎道的交接口
.已知某男子速滑運動員順利通過每個交接口的概率均為
,摔倒的概率均為
.假定運動員只有在摔倒或到達終點時才停止滑行,現在用
表示該運動員滑行最后一圈時在這一圈內已經順利通過的交接口數.
(1)求該運動員停止滑行時恰好已順利通過個交接口的概率;
(2)求的分布列及數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知海島在海島
北偏東
,
,
相距
海里,物體甲從海島
以
海里/小時的速度沿直線向海島
移動,同時物體乙從海島
沿著海島
北偏西
方向以
海里/小時的速度移動.
(1)問經過多長時間,物體甲在物體乙的正東方向;
(2)求甲從海島到達海島
的過程中,甲、乙兩物體的最短距離.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com