【題目】已知定義在R上的函數f(x),滿足 ,且f(3)=f(1)﹣1.
(1)求實數k的值;
(2)若函數g(x)=f(x)+f(﹣x)(﹣2≤x≤2),求g(x)的值域.
【答案】
(1)解:由題意可得f(1)﹣1=1+2﹣1=2,
f(3)=f(﹣1+4)=f(﹣1)=2,
所以可得
(2)解:由 得:
,
∴ ,
當0<x<2時,1<x+1<3,
所以
在(x+1)2=4即x=1處取得最小值,
所以g(x)在(0,1)處單調遞減,
在[1,2)上單調遞增,
,
當x→2時, ,
所以g(x)在(0,2)上的值域為[5,6).
當﹣2<x<0時,1<1﹣x<3,
∴ ;
當(1﹣x)2=4,即x=﹣1時取得最小值;
當x→﹣2時, ;
當x→0時, ,
∴g(x)在(﹣2,0)上的值域為[5,6).
綜上所述,g(x)的值域為
【解析】(1)由已知中函數f(x),滿足 ,且f(3)=f(1)﹣1,構造方程,解得實數k的值;(2)函數
,分類討論各段上函數值的范圍,可得答案.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示.
(1)求函數f(x)的解析式,并寫出f(x)的單調減區間;
(2)△ABC的內角分別是A,B,C,若f(A)=1,cosB= ,求sinC的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)是定義在R上的偶函數,若方程f(x+1)=|x2+2x﹣3|的實根分別為x1 , x2 , …,xn , 則x1+x2+…+xn=( )
A.n
B.﹣n
C.﹣2n
D.﹣3n
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C1的參數方程為 為參數),以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C2的極坐標方程為
.
(1)求曲線C1 , C2的直角坐標方程;
(2)已知點P,Q分別是線C1 , C2的動點,求|PQ|的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側面PAD⊥底面ABCD,且PA=PD=AD,E,F分別為PC,BD的中點.
求證:(1)EF∥平面PAD;
(2)PA⊥平面PDC.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com