【題目】已知函數f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示.
(1)求函數f(x)的解析式,并寫出f(x)的單調減區間;
(2)△ABC的內角分別是A,B,C,若f(A)=1,cosB= ,求sinC的值.
【答案】
(1)解:由圖象最高點得A=1,
由周期 T=
=
,
∴T=π= ,解得ω=2.
當x= 時,f(x)=1,可得sin(2
+φ)=1,
∵|φ|< ,
∴φ= .
∴f(x)=sin(2x+ ).
由圖象可得f(x)的單調減區間為[kπ+ ,kπ+
],k∈Z
(2)解:由(I)可知,sin(2x+ )=1,
∵0<A<π,
∴ <2A+
<
,
∴2A+ =
,A=
.
∵0<B<π,
∴sinB= =
.
∴sinC=sin(π﹣A﹣B)=sin(A+B)
=sinAcosB+cosAsinB
= ×
+
×
=
【解析】(1)由圖象易知A=1, T=
,可知ω=2,函數圖象過(
,1),|φ|<
可求得φ,從而可得函數f(x)的解析式,繼而可得f(x)的單調減區間;(2)由(I)可知,sin(2x+
)=1,從而可求得A=
,sinB=
,于是利用兩角和的正弦求得sinC的值.
科目:高中數學 來源: 題型:
【題目】某單位決定投資3200元建一倉庫(長方體狀),高度恒定,它的后墻利用舊墻不花錢,正面用鐵柵,每米長造價40元,兩側墻砌磚,每米長造價45元,頂部每平方米造價20元。
(1)設鐵柵長為米,一堵磚墻長為
米,求函數
的解析式;
(2)為使倉庫總面積達到最大,正面鐵柵應設計為多長?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校100名學生期中考試數學成績的頻率分布直方圖如圖所示,其中成績分組區間如下:
組號 | 第一組 | 第二組 | 第三組 | 第四組 | 第五組 |
分組 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
(1)求圖中a的值;
(2)根據頻率分布直方圖,估計這100名學生期中考試數學成績的平均分;
(3)現用分層抽樣的方法從第3、4、5組中隨機抽取6名學生,將該樣本看成一個總體,從中隨機抽取2名,求其中恰有1人的分數不低于90分的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列是遞增數列,且對
,都有
,則實數
的取值范圍是
A. B.
C.
D.
【答案】D
【解析】
由{an}是遞增數列,得到an+1>an,再由“an=n2+λn恒成立”轉化為“λ>﹣2n﹣1對于n∈N*恒成立”求解.
∵{an}是遞增數列,
∴an+1>an,
∵an=n2+λn恒成立
即(n+1)2+λ(n+1)>n2+λn,
∴λ>﹣2n﹣1對于n∈N*恒成立.
而﹣2n﹣1在n=1時取得最大值﹣3,
∴λ>﹣3,
故選:D.
【點睛】
本題主要考查由數列的單調性來構造不等式,解決恒成立問題.研究數列單調性的方法有:比較相鄰兩項間的關系,將an+1和an做差與0比較,即可得到數列的單調性;研究數列通項即數列表達式的單調性.
【題型】單選題
【結束】
13
【題目】已知數列{an}滿足a1=1,且an=an-1+2n1 (n≥2 ),則a20=________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于不等式,則對區間
上的任意x都成立的實數t的取值范圍是_______.
【答案】
【解析】
根據二次函數的單調性求出x2﹣3x+2在區間[0,2]上的最小值和最大值,把問題轉化關于t的不等式組得答案.
∵x2﹣3x+2=,
∴當x∈[0,2]時,,(x2﹣3x+2)max=2.
∴.
∴對于不等式(2t﹣t2)≤x2﹣3x+2≤3﹣t2,對區間[0,2]上任意x都成立的實數t的取值范圍是[﹣1,1﹣
].
故答案為:[﹣1,1﹣].
【點睛】
本題考查函數恒成立問題,考查了不等式的解法,體現了數學轉化思想方法,是基礎題.二次不等式分含參二次不等式和不含參二次不等式;對于含參的二次不等式問題,先判斷二次項系數是否含參,接著討論參數等于0,不等于0,再看式子能否因式分解,若能夠因式分解則進行分解,再比較兩根大小,結合圖像得到不等式的解集.
【題型】填空題
【結束】
16
【題目】等差數列{an}的公差d≠0滿足成等比數列,若
=1,Sn是{
}的前n項和,則
的最小值為________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】等差數列{an}的各項均為正數,a1=3,前n項和為Sn,{bn}為等比數列,b1=1,且b2S2=64,b3S3=960.
(1)求an與bn;
(2)求
【答案】(1)an=2n+1,bn=8n-1.(2)
【解析】
(1)設{an}的公差為d,{bn}的公比為q,由題設條件建立方程組,解方程組得到d和q的值,從而求出an與bn;(2)由Sn=n(n+2),知,由此可求出
的值.
(1)設{an}的公差為d,{bn}的公比為q,則d為正數,
an=3+(n-1)d,bn=qn-1,
依題意有,
解得或
(舍去).
故an=3+2(n-1)=2n+1,bn=8n-1.
(2)Sn=3+5+…+(2n+1)=n(n+2).
所以+
+…+
=
+
+
+…+
= (1-
+
-
+
-
+…+
-
)
= (1+
-
-
)
=-
.
【點睛】
這個題目考查的是數列通項公式的求法及數列求和的常用方法;數列通項的求法中有常見的已知和
的關系,求
表達式,一般是寫出
做差得通項,但是這種方法需要檢驗n=1時通項公式是否適用;數列求和常用法有:錯位相減,裂項求和,分組求和等。
【題型】解答題
【結束】
21
【題目】已知函數f(x)滿足f(x+y)=f(x)·f(y),且f(1)=.
(1)當n∈N+,求f(n)的表達式;
(2)設an=nf(n),n∈N+,求證:a1+a2+…+an<2.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】曲線C1的參數方程為 (θ為參數),將曲線C1上所有點的橫坐標伸長為原來的2倍,縱坐標伸長為原來的
倍,得到曲線C2.以平面直角坐標系xOy的原點O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線l:ρ(cosθ-2sinθ)=6.
(1)求曲線C2和直線l的普通方程.
(2)P為曲線C2上任意一點,求點P到直線l的距離的最值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在R上的函數f(x),滿足 ,且f(3)=f(1)﹣1.
(1)求實數k的值;
(2)若函數g(x)=f(x)+f(﹣x)(﹣2≤x≤2),求g(x)的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
過點
,離心率為
.
(1)求橢圓的方程;
(2),
是過點
且互相垂直的兩條直線,其中
交圓
于
,
兩點,
交橢圓
于另一個點
,求
面積取得最大值時直線
的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com