【題目】為了調查某廠工人生產某種產品的能力,隨機抽查了20位工人某天生產該產品的數量.產品數量的分組區間為[45,55),[55,65),[65,75),[75,85),[85,95)由此得到頻率分布直方圖如圖.則產品數量位于[55,65)范圍內的頻率為;這20名工人中一天生產該產品數量在[55,75)的人數是 .
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(x﹣t)|x|(t∈R).
(1)當t=2時,求函數f(x)的單調性;
(2)試討論函數f(x)的單調區間;
(3)若t∈(0,2),對于x∈[﹣1,2],不等式f(x)>x+a都成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】36的所有正約數之和可按如下方法得到:因為36=22×32 , 所以36的所有正約數之和為(1+3+32)+(2+2×3+2×32)+(22+22×3+22×32)=(1+2+22)(1+3+32)=91,參照上述方法,可得100的所有正約數之和為( )
A.217
B.273
C.455
D.651
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知圓O外有一點P,作圓O的切線PM,M為切點,過PM的中點N,作割線NAB,交圓于A,B兩點,連接PA并延長,交圓O于點C,連續PB交圓O于點D,若MC=BC.
(1)求證:△APM∽△ABP;
(2)求證:四邊形PMCD是平行四邊形.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2 sin(
ωx)cos(
ωx)+2cos2(
ωx)(ω>0),且函數f(x)的最小正周期為π.
(1)求ω的值;
(2)求f(x)在區間 上的最大值和最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=2ln(x+2)﹣(x+1)2 , g(x)=k(x+1).
(1)求f(x)的單調區間;
(2)當k=2時,求證:對于x>﹣1,f(x)<g(x)恒成立;
(3)若存在x0>﹣1,使得當x∈(﹣1,x0)時,恒有f(x)>g(x)成立,試求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知四邊形是正方形,
,
,
,
都是等邊三角形,
、
、
、
分別是線段
、
、
、
的中點,分別以
、
、
、
為折痕將四個等邊三角形折起,使得
、
、
、
四點重合于一點
,得到一個四棱錐.對于下面四個結論:
①與
為異面直線; ②直線
與直線
所成的角為
③平面
; ④平面
平面
;
其中正確結論的個數有( )
A. 個 B.
個 C.
個 D.
個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線 的參數方程
(
為參數),曲線
的極坐標方程為
.
(1)將曲線 的參數方程化為普通方程,將曲線
的極坐標方程化為直角坐標方程;
(2)試問曲線 ,
是否相交?若相交,請求出公共弦的長;若不相交,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com