【題目】已知曲線 的參數方程
(
為參數),曲線
的極坐標方程為
.
(1)將曲線 的參數方程化為普通方程,將曲線
的極坐標方程化為直角坐標方程;
(2)試問曲線 ,
是否相交?若相交,請求出公共弦的長;若不相交,請說明理由.
科目:高中數學 來源: 題型:
【題目】為了調查某廠工人生產某種產品的能力,隨機抽查了20位工人某天生產該產品的數量.產品數量的分組區間為[45,55),[55,65),[65,75),[75,85),[85,95)由此得到頻率分布直方圖如圖.則產品數量位于[55,65)范圍內的頻率為;這20名工人中一天生產該產品數量在[55,75)的人數是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2018海南高三階段性測試(二模)】如圖,在直三棱柱中,
,
,點
為
的中點,點
為
上一動點.
(I)是否存在一點,使得線段
平面
?若存在,指出點
的位置,若不存在,請說明理由.
(II)若點為
的中點且
,求三棱錐
的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某加油站20名員工日銷售量的頻率分布直方圖,如圖所示:
(1)補全該頻率分布直方圖在[20,30)的部分,并分別計算日銷售量在 [10,20),[20,30)的員工數;
(2)在日銷量為[10,30)的員工中隨機抽取2人,求這兩名員工日銷量在 [20,30)的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個盒子中裝有5張編號依次為1、2、3、4、5的卡片,這5 張卡片除號碼外完全相同.現進行有放回的連續抽取2 次,每次任意地取出一張卡片.
(1)求出所有可能結果數,并列出所有可能結果;
(2)求事件“取出卡片號碼之和不小于7 或小于5”的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,圓C的方程為x2+y2-8x+15=0,若直線y=kx-2上至少存在一點,使得以該點為圓心,1為半徑的圓與圓C有公共點,則k的最大值是____________.
【答案】
【解析】∵圓C的方程可化為(x-4)2+y2=1,∴圓C的圓心為(4,0),半徑為1.由題意知,直線y=kx-2上至少存在一點A(x0,kx0-2),以該點為圓心,1為半徑的圓與圓C有公共點,∴存在x0∈R,使得AC≤1+1成立,即ACmin≤2.
∵ACmin即為點C到直線y=kx-2的距離,
∴≤2,解得0≤k≤
.∴k的最大值是
.
【題型】填空題
【結束】
15
【題目】在平面直角坐標系中,直線
.
(1)若直線與直線
平行,求實數
的值;
(2)若,
,點
在直線
上,已知
的中點在
軸上,求點
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校舉辦校園科技文化藝術節,在同一時間安排《生活趣味數學》和《校園舞蹈賞析》兩場講座.已知A、B兩學習小組各有5位同學,每位同學在兩場講座任意選聽一場.若A組1人選聽《生活趣味數學》,其余4人選聽《校園舞蹈賞析》;B組2人選聽《生活趣味數學》,其余3人選聽《校園舞蹈賞析》.
(1)若從此10人中任意選出3人,求選出的3人中恰有2人選聽《校園舞蹈賞析》的概率;
(2)若從A、B兩組中各任選2人,設X為選出的4人中選聽《生活趣味數學》的人數,求X的分布列和數學期望E(X).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示的多面體中, 菱形,
是矩形,
⊥平面
,
,
.
(Ⅰ)異面直線 與
所成的角余弦值;
(Ⅱ)求證平面 ⊥平面
;
(Ⅲ)在線段 取一點
,當二面角
的大小為60°時,求
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com