【題目】已知正四棱錐的全面積為2,記正四棱錐的高為h.
(1)用h表示底面邊長,并求正四棱錐體積V的最大值;
(2)當V取最大值時,求異面直線AB和PD所成角的大小.結果用反三角函數值表示
科目:高中數學 來源: 題型:
【題目】設函數.
(1)當時,對于一切
,函數
在區間
內總存在唯一零點,求
的取值范圍;
(2)當時,數列
的前
項和
,若
是單調遞增數列,求
的取值范圍;
(3)當,
時,函數
在區間
內的零點為
,判斷數列
、
、
、
、
的增減性,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】大數據時代對于現代人的數據分析能力要求越來越高,數據擬合是一種把現有數據通過數學方法來代入某條數式的表示方式,比如,
,2,
,n是平面直角坐標系上的一系列點,用函數
來擬合該組數據,盡可能使得函數圖象與點列
比較接近.其中一種描述接近程度的指標是函數的擬合誤差,擬合誤差越小越好,定義函數
的擬合誤差為:
.已知平面直角坐標系上5個點的坐標數據如表:
x | 1 | 3 | 5 | 7 | 9 |
y | 12 | 4 | 12 |
若用一次函數
來擬合上述表格中的數據,求該函數的擬合誤差
的最小值,并求出此時的函數解析式
;
若用二次函數
來擬合題干表格中的數據,求
;
請比較第
問中的
和第
問中的
,用哪一個函數擬合題目中給出的數據更好?
請至少寫出三條理由
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】是橢圓
的兩個焦點,
是橢圓
上一點,當
時,有
.
(1)求橢圓的標準方程;
(2)設過橢圓右焦點的動直線
與橢圓交于
兩點,試問:在
鈾上是否存在與
不重合的定點
,使得
恒成立?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某興趣小組測量電視塔AE的高度H(單位m),如示意圖,垂直放置的標桿BC高度h=4m,仰角∠ABE=α,∠ADE=β
(1)該小組已經測得一組α、β的值,tanα=1.24,tanβ=1.20,,請據此算出H的值
(2)該小組分析若干測得的數據后,發現適當調整標桿到電視塔的距離d(單位m),使α與β之差較大,可以提高測量精確度,若電視塔實際高度為125m,問d為多少時,α-β最大
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在全國第五個“扶貧日”到來之前,某省開展“精準扶貧,攜手同行”的主題活動,某貧困縣調查基層干部走訪貧困戶數量.鎮有基層干部60人,
鎮有基層干部60人,
鎮有基層干部80人,每人都走訪了若干貧困戶,按照分層抽樣,從
三鎮共選40名基層干部,統計他們走訪貧困戶的數量,并將走訪數量分成5組,
,繪制成如圖所示的頻率分布直方圖.
(1)求這40人中有多少人來自鎮,并估計
三鎮的基層干部平均每人走訪多少貧困戶;(同一組中的數據用該組區間的中點值作代表)
(2)如果把走訪貧困戶達到或超過25戶視為工作出色,以頻率估計概率,從三鎮的所有基層干部中隨機選取3人,記這3人中工作出色的人數為
,求
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有一個墻角,兩墻面所成二面角的大小為有一塊長為
米,寬為
米的矩形木板.用該木板檔在墻角處,木板邊緊貼墻面和地面,和墻角、地面圍成一個直角三棱柱儲物倉
.
(1)當為多少米時,儲物倉底面三角形
面積最大?
(2)當為多少米時,儲物倉的容積最大?
(3)求儲物倉側面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市戶居民的月平均用電量(單位:度),以
,
,
,
,
,
,
分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求月平均用電量的眾數和中位數;
(3)在月平均用電量為,
,
,
的四組用戶中,用分層抽樣的方法抽取
戶居民,則月平均用電量在
的用戶中應抽取多少戶?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于定義在上的函數
,若同時滿足:①存在閉區間
,使得任取
,都有
(
是常數);②對于
內任意
,當
時總有
,稱
為“平底型”函數.
(1)判斷,
是否為“平底型”函數?說明理由;
(2)設是(1)中的“平底型”函數,若
對一切
恒成立,求實數
的范圍;
(3)若,
是“平底型”函數,求
和
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com