精英家教網 > 高中數學 > 題目詳情

【題目】高鐵是一種快捷的交通工具,為我們的出行提供了極大的方便。某高鐵換乘站設有編號為①,②,③,④,⑤的五個安全出口,若同時開放其中的兩個安全出口,疏散名乘客所需的時間如下:

安全出口編號

①②

②③

③④

④⑤

①⑤

疏散乘客時間(s)

120

220

160

140

200

則疏散乘客最快的一個安全出口的編號是( )

A. B. C. D.

【答案】C

【解析】

利用同時開放其中的兩個安全出口,疏散1000名乘客所需的時間分析對比,能求出結果.

1)同時開放①⑤兩個安全出口,疏散1000名乘客所需的時間為200s,同時開放④⑤兩個安全出口,疏散1000名乘客所需的時間為140s,所以疏散1000名乘客④比①快60s

2)同時開放①⑤兩個安全出口,疏散1000名乘客所需的時間為200s,同時開放①②兩個安全出口,疏散1000名乘客所需的時間為120s,所以疏散1000名乘客②比⑤快80s

3)同時開放①②兩個安全出口,疏散1000名乘客所需的時間為120s,同時開放②③兩個安全出口,疏散1000名乘客所需的時間為220s,所以疏散1000名乘客①比③快100s

4)同時開放②③兩個安全出口,疏散1000名乘客所需的時間為220s,同時開放③④兩個安全出口,疏散1000名乘客所需的時間為160s,所以疏散1000名乘客④比②快60s

5)同時開放③④兩個安全出口,疏散1000名乘客所需的時間為160s,同時開放④⑤兩個安全出口,疏散1000名乘客所需的時間為140s,所以疏散1000名乘客⑤比③快20s

綜上,疏散乘客最快的一個安全出口的編號是④.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】2019年4月,甲乙兩校的學生參加了某考試機構舉行的大聯考,現對這兩校參加考試的學生的數學成績進行統計分析,數據統計顯示,考生的數學成績服從正態分布,從甲乙兩校100分及以上的試卷中用系統抽樣的方法各抽取了20份試卷,并將這40份試卷的得分制作成如圖所示的莖葉圖:

(1)試通過莖葉圖比較這40份試卷的兩校學生數學成績的中位數;

(2)若把數學成績不低于135分的記作數學成績優秀,根據莖葉圖中的數據,判斷是否有的把握認為數學成績在100分及以上的學生中數學成績是否優秀與所在學校有關?

(3)從所有參加此次聯考的學生中(人數很多)任意抽取3人,記數學成績在134分以上的人數為,求的數學期望.

附:若隨機變量服從正態分布,則,

參考公式與臨界值表:,其中

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱柱中,側面底面,底面為直角梯形,其中,,O中點.

1)求證:平面;

2)求凸多面體的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知直線的方程為,曲線是以坐標原點為頂點,直線為準線的拋物線.以坐標原點為極點,軸非負半軸為極軸建立極坐標系.

(1)分別求出直線與曲線的極坐標方程:

(2)點是曲線上位于第一象限內的一個動點,點是直線上位于第二象限內的一個動點,且,請求出的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知雙曲線的左、右焦點分別是,左、右兩頂點分別是、,弦ABCD所在直線分別平行于x軸與y軸,線段BA的延長線與線段CD相交于點如圖).

的一條漸近線的一個方向向量,試求的兩漸近線的夾角;

,,,,試求雙曲線的方程;

的條件下,且,點C與雙曲線的頂點不重合,直線和直線與直線l分別相交于點MN,試問:以線段MN為直徑的圓是否恒經過定點?若是,請求出定點的坐標;若不是,試說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知曲線為參數),.以原點為極點,軸的非負半軸為極軸建立極坐標系.

(I)寫出曲線與圓的極坐標方程;

(II)在極坐標系中,已知射線分別與曲線及圓相交于,當時,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某工廠預購軟件服務,有如下兩種方案:

方案一:軟件服務公司每日收取工廠60元,對于提供的軟件服務每次10元;

方案二:軟件服務公司每日收取工廠200元,若每日軟件服務不超過15次,不另外收費,若超過15次,超過部分的軟件服務每次收費標準為20元.

(1)設日收費為元,每天軟件服務的次數為,試寫出兩種方案中的函數關系式;

(2)該工廠對過去100天的軟件服務的次數進行了統計,得到如圖所示的條形圖,依據該統計數據,把頻率視為概率,從節約成本的角度考慮,從兩個方案中選擇一個,哪個方案更合適?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,圓錐的頂點為A,底面的圓心為OBC是底面圓的一條直徑,點DE在底面圓上,已知,.

1)證明:;

2)若二面角的大小為,求直線OC與平面ACE所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某部隊在一次軍演中要先后執行六項不同的任務,要求是:任務必須排在前三項執行,且執行任務之后需立即執行任務,任務、相鄰,則不同的執行方案共有______.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视