【題目】高鐵是一種快捷的交通工具,為我們的出行提供了極大的方便。某高鐵換乘站設有編號為①,②,③,④,⑤的五個安全出口,若同時開放其中的兩個安全出口,疏散名乘客所需的時間如下:
安全出口編號 | ①② | ②③ | ③④ | ④⑤ | ①⑤ |
疏散乘客時間(s) | 120 | 220 | 160 | 140 | 200 |
則疏散乘客最快的一個安全出口的編號是( )
A. ①B. ②C. ④D. ⑤
【答案】C
【解析】
利用同時開放其中的兩個安全出口,疏散1000名乘客所需的時間分析對比,能求出結果.
(1)同時開放①⑤兩個安全出口,疏散1000名乘客所需的時間為200s,同時開放④⑤兩個安全出口,疏散1000名乘客所需的時間為140s,所以疏散1000名乘客④比①快60s.
(2)同時開放①⑤兩個安全出口,疏散1000名乘客所需的時間為200s,同時開放①②兩個安全出口,疏散1000名乘客所需的時間為120s,所以疏散1000名乘客②比⑤快80s.
(3)同時開放①②兩個安全出口,疏散1000名乘客所需的時間為120s,同時開放②③兩個安全出口,疏散1000名乘客所需的時間為220s,所以疏散1000名乘客①比③快100s.
(4)同時開放②③兩個安全出口,疏散1000名乘客所需的時間為220s,同時開放③④兩個安全出口,疏散1000名乘客所需的時間為160s,所以疏散1000名乘客④比②快60s.
(5)同時開放③④兩個安全出口,疏散1000名乘客所需的時間為160s,同時開放④⑤兩個安全出口,疏散1000名乘客所需的時間為140s,所以疏散1000名乘客⑤比③快20s.
綜上,疏散乘客最快的一個安全出口的編號是④.
科目:高中數學 來源: 題型:
【題目】2019年4月,甲乙兩校的學生參加了某考試機構舉行的大聯考,現對這兩校參加考試的學生的數學成績進行統計分析,數據統計顯示,考生的數學成績服從正態分布
,從甲乙兩校100分及以上的試卷中用系統抽樣的方法各抽取了20份試卷,并將這40份試卷的得分制作成如圖所示的莖葉圖:
(1)試通過莖葉圖比較這40份試卷的兩校學生數學成績的中位數;
(2)若把數學成績不低于135分的記作數學成績優秀,根據莖葉圖中的數據,判斷是否有的把握認為數學成績在100分及以上的學生中數學成績是否優秀與所在學校有關?
(3)從所有參加此次聯考的學生中(人數很多)任意抽取3人,記數學成績在134分以上的人數為,求
的數學期望.
附:若隨機變量服從正態分布
,則
,
,
.
參考公式與臨界值表:,其中
.
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知直線
的方程為
,曲線
是以坐標原點
為頂點,直線
為準線的拋物線.以坐標原點
為極點,
軸非負半軸為極軸建立極坐標系.
(1)分別求出直線與曲線
的極坐標方程:
(2)點是曲線
上位于第一象限內的一個動點,點
是直線
上位于第二象限內的一個動點,且
,請求出
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線:
的左、右焦點分別是
、
,左、右兩頂點分別是
、
,弦AB和CD所在直線分別平行于x軸與y軸,線段BA的延長線與線段CD相交于點
如圖).
⑴若是
的一條漸近線的一個方向向量,試求
的兩漸近線的夾角
;
⑵若,
,
,
,試求雙曲線
的方程;
⑶在⑴的條件下,且,點C與雙曲線的頂點不重合,直線
和直線
與直線l:
分別相交于點M和N,試問:以線段MN為直徑的圓是否恒經過定點?若是,請求出定點的坐標;若不是,試說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線(
為參數),
.以原點
為極點,
軸的非負半軸為極軸建立極坐標系.
(I)寫出曲線與圓
的極坐標方程;
(II)在極坐標系中,已知射線分別與曲線
及圓
相交于
,當
時,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠預購軟件服務,有如下兩種方案:
方案一:軟件服務公司每日收取工廠60元,對于提供的軟件服務每次10元;
方案二:軟件服務公司每日收取工廠200元,若每日軟件服務不超過15次,不另外收費,若超過15次,超過部分的軟件服務每次收費標準為20元.
(1)設日收費為元,每天軟件服務的次數為
,試寫出兩種方案中
與
的函數關系式;
(2)該工廠對過去100天的軟件服務的次數進行了統計,得到如圖所示的條形圖,依據該統計數據,把頻率視為概率,從節約成本的角度考慮,從兩個方案中選擇一個,哪個方案更合適?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,圓錐的頂點為A,底面的圓心為O,BC是底面圓的一條直徑,點D,E在底面圓上,已知,
.
(1)證明:;
(2)若二面角的大小為
,求直線OC與平面ACE所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某部隊在一次軍演中要先后執行六項不同的任務,要求是:任務必須排在前三項執行,且執行任務
之后需立即執行任務
,任務
、
相鄰,則不同的執行方案共有______種.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com