【題目】設函數f(x)=|x+1|﹣|2x﹣4|;
(1)解不等式f(x)≥1;
(2)若對x∈R,都有f(x)+3|x﹣2|>m,求實數m的取值范圍.
【答案】
(1)解: f(x)=|x+1|﹣|2x﹣4|=|x+1|﹣2|x﹣2|≥1,
x≥2時,x+1﹣2x+4≥1,解得:x≤4,
﹣1<x<2時,x+1+2x﹣4≥1,解得:x≥ ,
x≤﹣1時,﹣x﹣1+2x﹣4≥1,無解,
故不等式的解集是[ ,4];
(2)解:若對x∈R,都有f(x)+3|x﹣2|>m,
即若對x∈R,都有|x+1|+|x﹣2|>m,
而|x+1|+|x﹣2|≥|x+1﹣x+2|=3,
故m<3.
【解析】(1)通過討論x的范圍,求出不等式的解集,取并集即可;(2)根據絕對值的性質求出f(x)+3|x﹣2|的最小值,從而求出m的范圍即可.
【考點精析】利用絕對值不等式的解法對題目進行判斷即可得到答案,需要熟知含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規律:關鍵是去掉絕對值的符號.
科目:高中數學 來源: 題型:
【題目】已知函數 .
(1)當x∈(0,1)時,求f(x)的單調性;
(2)若h(x)=(x2﹣x)f(x),且方程h(x)=m有兩個不相等的實數根x1 , x2 . 求證:x1+x2>1.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,隨著我國汽車消費水平的提高,二手車流通行業得到迅猛發展.某汽車交易市場對2017年成交的二手車交易前的使用時間(以下簡稱“使用時間”)進行統計,得到頻率分布直方圖如圖1.
圖1 圖2
(1)記“在年成交的二手車中隨機選取一輛,該車的使用年限在
”為事件
,試估計
的概率;
(2)根據該汽車交易市場的歷史資料,得到散點圖如圖2,其中(單位:年)表示二手車的使用時間,
(單位:萬元)表示相應的二手車的平均交易價格.由散點圖看出,可采用
作為二手車平均交易價格
關于其使用年限
的回歸方程,相關數據如下表(表中
,
):
①根據回歸方程類型及表中數據,建立關于
的回歸方程;
②該汽車交易市場對使用8年以內(含8年)的二手車收取成交價格的傭金,對使用時間8年以上(不含8年)的二手車收取成交價格
的傭金.在圖1對使用時間的分組中,以各組的區間中點值代表該組的各個值.若以2017年的數據作為決策依據,計算該汽車交易市場對成交的每輛車收取的平均傭金.
附注:①對于一組數據,其回歸直線
的斜率和截距的最小二乘估計分別為
;
②參考數據:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】市某機構為了調查該市市民對我國申辦
年足球世界杯的態度,隨機選取了
位市民進行調查,調查結果統計如下:
支持 | 不支持 | 合計 | |
男性市民 | |||
女性市民 | |||
合計 |
(1)根據已知數據,把表格數據填寫完整;
(2)利用(1)完成的表格數據回答下列問題:
(i)能否在犯錯誤的概率不超過的前提下認為支持申辦足球世界杯與性別有關;
(ii)已知在被調查的支持申辦足球世界杯的男性市民中有位退休老人,其中
位是教師,現從這
位退休老人中隨機抽取
人,求至多有
位老師的概率.
附:,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司訂購了一批樹苗,為了檢測這批樹苗是否合格,從中隨機抽測 株樹苗的高度,經數據處理得到如圖的頻率分布直方圖,起中最高的
株樹苗高度的莖葉圖如圖所示,以這
株樹苗的高度的頻率估計整批樹苗高度的概率.
(1)求這批樹苗的高度高于 米的概率,并求圖19-1中,
,
,
的值;
(2)若從這批樹苗中隨機選取 株,記
為高度在
的樹苗數列,求
的分布列和數學期望.
(3)若變量 滿足
且
,則稱變量
滿足近似于正態分布
的概率分布.如果這批樹苗的高度滿足近似于正態分布
的概率分布,則認為這批樹苗是合格的,將順利獲得簽收;否則,公司將拒絕簽收.試問,該批樹苗能否被簽收?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖所示的圓臺中,AC是下底面圓O的直徑,EF是上底面圓O′的直徑,FB是圓臺的一條母線.
(1)已知G,H分別為EC,FB的中點,求證:GH∥平面ABC;
(2)已知EF=FB= AC=2
,AB=BC,求二面角F﹣BC﹣A的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,分別是橢圓
的左、右焦點.
(1)若點是第一象限內橢圓上的一點,
,求點
的坐標;
(2)設過定點的直線
與橢圓交于不同的兩點
,且
為銳角(其中
為坐標原點),求直線
的斜率
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com