【題目】對于定義域為D的函數y=f(x),如果存在區間[m,n]D,同時滿足:
①f(x)在[m,n]內是單調函數;
②當定義域是[m,n]時,f(x)的值域也是[m,n].則稱[m,n]是該函數的“和諧區間”.
(1)證明:[0,1]是函數y=f(x)=x2的一個“和諧區間”.
(2)求證:函數不存在“和諧區間”.
(3)已知:函數(a∈R,a≠0)有“和諧區間”[m,n],當a變化時,求出n﹣m的最大值.
【答案】(1)證明見解析;(2)證明見解析;(3).
【解析】
試題分析:(1)根據二次函數的性質,在區間上單調遞增,且值域也為
滿足“和諧區間”的定義,即可得到結論;(2)該問題是一個確定性問題,從正面證明有一定的難度,故可采用反證法來進行證明;(3)設
是已知函數定義域的子集,我們可以用
表示出
的取值,轉化為二次函數的最值問題后,根據二次函數的性質,可以得到答案.
試題解析:(1)y=x2在區間[0,1]上單調遞增.
又f(0)=0,f(1)=1,
值域為[0,1],
區間[0,1]是y=f(x)=x2的一個“和諧區間”.
(2)設[m,n]是已知函數定義域的子集.
故函數
在[m,n]上單調遞增.
若[m,n]是已知函數的“和諧區間”,則
故m、n是方程的同號的相異實數根.
x2﹣3x+5=0無實數根,
函數
不存在“和諧區間”.
(3)設[m,n]是已知函數定義域的子集.
x≠0,
故函數在[m,n]上單調遞增.
若[m,n]是已知函數的“和諧區間”,則
故m、n是方程,即
的同號的相異實數根.
,
m,n同號,只須
,即a>1或a<﹣3時,
已知函數有“和諧區間”[m,n],
當a=3時,n﹣m取最大值
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,圓
:
,
,
,
為平面內一動點,若以線段
為直徑的圓與圓
相切.
(1)證明為定值,并寫出點
的軌跡方程;
(2)設點的軌跡為曲線
,直線
過
交
于
,
兩點,過
且與
垂直的直線與
交于
,
兩點,求四邊形
面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
過點
,其參數方程為
(
為參數).以坐標原點
為極點,
軸的非負半軸為極軸,建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線的普通方程和曲線
的直角坐標方程;
(2)若曲線與
相交于
,
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列推理不屬于合情推理的是( )
A. 由銅、鐵、鋁、金、銀等金屬能導電,得出一切金屬都能導電.
B. 半徑為的圓面積
,則單位圓面積為
.
C. 由平面三角形的性質推測空間三棱錐的性質.
D. 猜想數列2,4,8,…的通項公式為.
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如果存在函數(
為常數),使得對函數
定義域內任意
都有
成立,那么稱
為函數
的一個“線性覆蓋函數”.給出如下四個結論:
①函數存在“線性覆蓋函數”;
②對于給定的函數,其“線性覆蓋函數”可能不存在,也可能有無數個;
③為函數
的一個“線性覆蓋函數”;
④若為函數
的一個“線性覆蓋函數”,則
其中所有正確結論的序號是___________
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(
,且
).
(Ⅰ)求函數的單調區間;
(Ⅱ)求函數在
上的最大值.
【答案】(Ⅰ)的單調增區間為
,單調減區間為
.(Ⅱ)當
時,
;當
時,
.
【解析】【試題分析】(I)利用的二階導數來研究求得函數
的單調區間.(II) 由(Ⅰ)得
在
上單調遞減,在
上單調遞增,由此可知
.利用導數和對
分類討論求得函數在
不同取值時的最大值.
【試題解析】
(Ⅰ),
設
,則
.
∵,
,∴
在
上單調遞增,
從而得在
上單調遞增,又∵
,
∴當時,
,當
時,
,
因此, 的單調增區間為
,單調減區間為
.
(Ⅱ)由(Ⅰ)得在
上單調遞減,在
上單調遞增,
由此可知.
∵,
,
∴.
設,
則
.
∵當時,
,∴
在
上單調遞增.
又∵,∴當
時,
;當
時,
.
①當時,
,即
,這時,
;
②當時,
,即
,這時,
.
綜上, 在
上的最大值為:當
時,
;
當時,
.
[點睛]本小題主要考查函數的單調性,考查利用導數求最大值. 與函數零點有關的參數范圍問題,往往利用導數研究函數的單調區間和極值點,并結合特殊點,從而判斷函數的大致圖像,討論其圖象與軸的位置關系,進而確定參數的取值范圍;或通過對方程等價變形轉化為兩個函數圖象的交點問題.
【題型】解答題
【結束】
22
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,圓
的普通方程為
. 在以坐標原點為極點,
軸正半軸為極軸的極坐標系中,直線
的極坐標方程為
.
(Ⅰ) 寫出圓 的參數方程和直線
的直角坐標方程;
( Ⅱ ) 設直線 與
軸和
軸的交點分別為
,
為圓
上的任意一點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知冪函數f(x)=,其中2<m<2,m∈Z,滿足:
(1)f(x)是區間(0,+∞)上的增函數;
(2)對任意的x∈R,都有f(x) +f(x)=0.
求同時滿足條件(1)、(2)的冪函數f(x)的解析式,并求x∈[0,3]時,f(x)的值域.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com