精英家教網 > 高中數學 > 題目詳情

【題目】某省高考改革新方案,不分文理科,高考成績實行“”的構成模式,第一個“3”是語文、數學、外語,每門滿分150分,第二個“3”由考生在思想政治、歷史、地理、物理、化學、生物6個科目中自主選擇其中3個科目參加等級性考試,每門滿分100分,高考錄取成績卷面總分滿分750分.為了調查學生對物理、化學、生物的選考情況,將“某市某一屆學生在物理、化學、生物三個科目中至少選考一科的學生”記作學生群體,從學生群體中隨機抽取了50名學生進行調查,他們選考物理,化學,生物的科目數及人數統計如下表:

(I)從所調查的50名學生中任選2名,求他們選考物理、化學、生物科目數量不相等的概率;

(II)從所調查的50名學生中任選2名,記表示這2名學生選考物理、化學、生物的科目數量之差的絕對值,求隨機變量的分布列和數學期望;

(III)將頻率視為概率,現從學生群體中隨機抽取4名學生,記其中恰好選考物理、化學、生物中的兩科目的學生數記作,求事件“”的概率.

【答案】(Ⅰ); (Ⅱ)見解析; (Ⅲ).

【解析】試題分析:(Ⅰ)設“所選取的2名學生選考物理、化學、生物科目數量相等”為事件的概率,從而得到選考物理、化學、生物科目數量不相等的概率;

(Ⅱ)由題意得到隨機變量的取值,計算其概率,列出分布列,根據公式求解數學期望.

(Ⅲ)由題意得所調查的學生中物理、化學、生物選考兩科目的學生的人數,得到相應的概率,即可求解“”的概率.

試題解析:(Ⅰ)記“所選取的2名學生選考物理、化學、生物科目數量相等”為事件A

 所以他們選考物理、化學、生物科目數量不相等的概率為

    

(Ⅱ)由題意可知X的可能取值分別為0,1,2

  , 

 

 從而X的分布列為

X

0

1

2

P

 

(Ⅲ)所調查的50名學生中物理、化學、生物選考兩科目的學生有25名

 相應的概率為,所以  

 所以事件“”的概率為

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2+2ax+2,
(1)求實數a的取值范圍,使函數y=f(x)在區間[﹣5,5]上是單調函數;
(2)若x∈[﹣5,5],記y=f(x)的最大值為g(a),求g(a)的表達式并判斷其奇偶性.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在極坐標系中,點 的極坐標是,曲線 的極坐標方程為.以極點為坐標原點,極軸為 軸的正半軸建立平面直角坐標系,斜率為 的直線 經過點.

(1)寫出直線 的參數方程和曲線 的直角坐標方程;

(2)若直線 和曲線相交于兩點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的右焦點為,點在橢圓上.

1求橢圓的方程;

2過點的直線,交橢圓兩點,點在橢圓上,坐標原點恰為的重心,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某研究小組在電腦上進行人工降雨模擬實驗,準備用A、B、C三種人工降雨方式分別對甲、乙、丙三地實施人工降雨,其實驗統計結果如下

方式

實施地點

大雨

中雨

小雨

模擬實驗次數

A

2次

6次

4次

12次

B

3次

6次

3次

12次

C

2次

2次

8次

12次

假定對甲、乙、丙三地實施的人工降雨彼此互不影響,且不考慮洪澇災害,請根據統計數據:

1)求甲、乙、丙三地都恰為中雨的概率;

2考慮不同地區的干旱程度,當雨量達到理想狀態時,能緩解旱情,若甲、丙地需中雨或大雨即達到理想狀態,乙地必須是大雨才達到理想狀態,記甲、乙、丙三地中緩解旱情的個數為隨機變量,求的分布列和數學期望

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某大理石工廠初期花費98萬元購買磨大理石刀具,第一年需要各種費用12萬元,從第二年起,每年所需費用比上一年增加4萬元,該大理石加工廠每年總收入50萬元.

(1)到第幾年末總利潤最大,最大值是多少?

(2)到第幾年末年平均利潤最大,最大值是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知⊙ 與⊙ ,以, 分別為左右焦點的橢圓 經過兩圓的交點.

(Ⅰ)求橢圓的方程;

(Ⅱ), 分別為橢圓的左右頂點, , 是橢圓上非頂點的三點,若,試問的面積是否為定值?若是,求出這個定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了普及環保知識,增強環保意識,某校從理科甲班抽取60人,從文科乙班抽取50人參加環保知識測試.

優秀人數

非優秀人數

總計

甲班

乙班

30

總計

60

(Ⅰ)根據題目完成列聯表,并據此判斷是否有的把握認為環保知識成績優秀與學生的文理分類有關.

(Ⅱ)現已知, , 三人獲得優秀的概率分別為 , ,設隨機變量表示, , 三人中獲得優秀的人數,求的分布列及期望

附: ,

0.100

0.050

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某科研小組研究發現:一棵水果樹的產量(單位:百千克)與肥料費用(單位:百元)滿足如下關系: .此外,還需要投入其它成本(如施肥的人工費等)百元.已知這種水果的市場售價為16元/千克(即16百元/百千克),且市場需求始終供不應求.記該棵水果樹獲得的利潤為(單位:百元).

(1)求的函數關系式;

當投入的肥料費用為多少時,該水果樹獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视