【題目】定義首項為1且公比為正數的等比數列為“M-數列”.
(1)已知等比數列{an}滿足:,求證:數列{an}為“M-數列”;
(2)已知數列{bn}滿足:,其中Sn為數列{bn}的前n項和.
①求數列{bn}的通項公式;
②設m為正整數,若存在“M-數列”{cn},對任意正整數k,當k≤m時,都有
成立,求m的最大值.
【答案】(1)見解析;
(2)①bn=n;②5.
【解析】
(1)由題意分別求得數列的首項和公比即可證得題中的結論;
(2)①由題意利用遞推關系式討論可得數列{bn}是等差數列,據此即可確定其通項公式;
②由①確定的值,將原問題進行等價轉化,構造函數,結合導函數研究函數的性質即可求得m的最大值.
(1)設等比數列{an}的公比為q,所以a1≠0,q≠0.
由,得
,解得
.
因此數列為“M—數列”.
(2)①因為,所以
.
由得
,則
.
由,得
,
當時,由
,得
,
整理得.
所以數列{bn}是首項和公差均為1的等差數列.
因此,數列{bn}的通項公式為bn=n.
②由①知,bk=k,.
因為數列{cn}為“M–數列”,設公比為q,所以c1=1,q>0.
因為ck≤bk≤ck+1,所以,其中k=1,2,3,…,m.
當k=1時,有q≥1;
當k=2,3,…,m時,有.
設f(x)=,則
.
令,得x=e.列表如下:
x | e | (e,+∞) | |
+ | 0 | – | |
| 極大值 |
因為,所以
.
取,當k=1,2,3,4,5時,
,即
,
經檢驗知也成立.
因此所求m的最大值不小于5.
若m≥6,分別取k=3,6,得3≤q3,且q5≤6,從而q15≥243,且q15≤216,
所以q不存在.因此所求m的最大值小于6.
綜上,所求m的最大值為5.
科目:高中數學 來源: 題型:
【題目】某行業主管部門為了解本行業中小企業的生產情況,隨機調查了100個企業,得到這些企業第一季度相對于前一年第一季度產值增長率y的頻數分布表.
| |||||
企業數 | 2 | 24 | 53 | 14 | 7 |
(1)分別估計這類企業中產值增長率不低于40%的企業比例、產值負增長的企業比例;
(2)求這類企業產值增長率的平均數與標準差的估計值(同一組中的數據用該組區間的中點值為代表).(精確到0.01)
附:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在圓錐中,已知高
,底面圓的半徑為4,
為母線
的中點;根據圓錐曲線的定義,下列四個圖中的截面邊界曲線分別為圓、橢圓、雙曲線及拋物線,下面四個命題,正確的個數為( )
①圓的面積為;
②橢圓的長軸為;
③雙曲線兩漸近線的夾角為;
④拋物線中焦點到準線的距離為.
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線的左、右焦點分別為F1,F2,以線段F1F2為直徑的圓與雙曲線的漸近線在第一象限的交點為P,且P滿足|PF1|﹣|PF2|=2b,則C的離心率e滿足( 。
A. e2﹣3e+1=0B. e4﹣3e2+1=0C. e2﹣e﹣1=0D. e4﹣e2﹣1=0
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某機構組織語文、數學學科能力競賽,按照一定比例淘汰后,頒發一二三等獎.現有某考場的兩科考試成績數據統計如下圖所示,其中數學科目成績為二等獎的考生有人.
(Ⅰ)求該考場考生中語文成績為一等獎的人數;
(Ⅱ)用隨機抽樣的方法從獲得數學和語文二等獎的學生中各抽取人,進行綜合素質測試,將他們的綜合得分繪成莖葉圖,求樣本的平均數及方差并進行比較分析;
(Ⅲ)已知本考場的所有考生中,恰有人兩科成績均為一等獎,在至少一科成績為一等獎的考生中,隨機抽取
人進行訪談,求兩人兩科成績均為一等獎的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市的公交公司為了方便市民出行,科學規劃車輛投放,在一個人員密集流動地段增設一個起點站,為了研究車輛發車間隔時間x與乘客等候人數y之間的關系,經過調查得到如下數據:
調查小組先從這6組數據中選取4組數據求線性回歸方程,再用剩下的2組數據進行檢驗.檢驗方法如下:先用求得的線性回歸方程計算間隔時間對應的等候人數,再求
與實際等候人數y的差,若差值的絕對值不超過1,則稱所求方程是“恰當回歸方程”.
(1)若選取的是后面4組數據,求y關于x的線性回歸方程,并判斷此方程是否是“恰當回歸方程”;
(2)為了使等候的乘客不超過35人,試用(1)中方程估計間隔時間最多可以設置為多少(精確到整數)分鐘?
附:對于一組數據(x1,y1),(x2,y2),……,(xn,yn),其回歸直線的斜率和截距的最小二乘估計分別為:
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com