【題目】(本小題滿分12分)
已知函數,其中
.
(Ⅰ)當時,求曲線
在點
處的切線方程;
(Ⅱ)當時,求函數
的單調區間與極值.
科目:高中數學 來源: 題型:
【題目】求經過直線L1:3x + 4y – 5 = 0與直線L2:2x – 3y + 8 = 0的交點M,且滿足下列條件的直線方程
(1)與直線2x + y + 5 = 0平行 ;
(2)與直線2x + y + 5 = 0垂直;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,將一個各面都涂了油漆的正方體,切割為125個同樣大小的小正方體,經過攪拌后,從中隨機取一個小正方體,記它的涂漆面數為X,則X的均值E(X)=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】古希臘畢達哥拉斯學派的數學家研究過各種多邊形數,如三角形數1,3,6,10,…,第n個三角形數為 .記第n個k邊形數為N(n,k)(k≥3),以下列出了部分k邊形數中第n個數的表達式:
三角形數 ,
正方形數N(n,4)=n2 ,
五邊形數 ,
六邊形數N(n,6)=2n2﹣n,
…
可以推測N(n,k)的表達式,由此計算N(10,24)= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}滿足a1=2,an+1-an=3·22n-1.
(1)求數列{an}的通項公式;
(2)令bn=nan,求數列{bn}的前n項和Sn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}的前n項和為Sn , 已知a1=1, ,n∈N* .
(1)求a2的值;
(2)求數列{an}的通項公式;
(3)證明:對一切正整數n,有 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.
(1)若A∩B={2},求實數a的值;
(2)若A∪B=A,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com