【題目】已知a是實數,函數.
(1)若,求a的值及曲線
在點
處的切線方程;
(2)討論函數在區間
上的單調性.
【答案】(1),
;(2)見解析.
【解析】
(1)化簡并對其求導,由
的值構建方程,求得a,進而由點斜式表示切線方程;
(2)對求導,令
,表示兩根,利用分類討論含參數的根所在區間,從而得其導函數的正負關系,即原函數的單調性對應增減.
(1),
,
則,
,
,
,
因此,曲線在點
處的切線方程為
,即
;
(2),
,
令,得
,
.
①當時,即當
時,對任意的
,
,
此時,函數在區間
上單調遞增.
②當時,即當
時,
此時,當,則
;
當時,
.
此時,函數在區間
上單調遞減,在區間
上單調遞增;
③當時,即當
時,對任意的
,
.
此時,函數在區間
上單調遞減.
綜上所述,當時,函數
在區間
上單調遞增;
當時,函數
在區間
上單調遞減,在區間
上單調遞增;
當時,函數
在區間
單調遞減.
科目:高中數學 來源: 題型:
【題目】設P是橢圓上一點,M,N分別是兩圓(x+4)2+y2=1和(x-4)2+y2=1上的點,則|PM|+|PN|的最小值、最大值分別為 ( )
A. 9,12 B. 8,11 C. 10,12 D. 8,12
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了研究高中學生對鄉村音樂的態度(喜歡和不喜歡兩種態度)與性別的關系,運用2×2列聯表進行獨立性檢驗,經計算K2=8.01,附表如下:
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
參照附表,得到的正確的結論是( 。
A. 有99%以上的把握認為“喜歡鄉村音樂與性別有關”
B. 有99%以上的把握認為“喜歡鄉村音樂與性別無關”
C. 在犯錯誤的概率不超過0.1%的前提下,認為“喜歡鄉村音樂與性別有關”
D. 在犯錯誤的概率不超過0.1%的前提下,認為“喜歡鄉村音樂與性別無關”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在交通工程學中,常作如下定義:交通流量(輛/小時):單位時間內通過道路上某一橫斷面的車輛數;車流速度
(千米/小時):單位時間內車流平均行駛過的距離;車流密度
(輛/千米):單位長度道路上某一瞬間所存在的車輛數. 一般的,
和
滿足一個線性關系,即
(其中
是正數),則以下說法正確的是
A. 隨著車流密度增大,車流速度增大
B. 隨著車流密度增大,交通流量增大
C. 隨著車流密度增大,交通流量先減小,后增大
D. 隨著車流密度增大,交通流量先增大,后減小
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的一個焦點為
,離心率為
.
為橢圓
的左頂點,
為橢圓
上異于
的兩個動點,直線
與直線
分別交于
兩點.
(I)求橢圓的方程;
(II)若與
的面積之比為
,求
的坐標;
(III)設直線與
軸交于點
,若
三點共線,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的焦距為
,點
在橢圓
上,且
的最小值是
(
為坐標原點).
(1)求橢圓的標準方程.
(2)已知動直線與圓
:
相切,且與橢圓
交于
,
兩點.是否存在實數
,使得
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】教材曾有介紹:圓上的點
處的切線方程為
我們將其結論推廣:橢圓
的點
處的切線方程為
在解本題時可以直接應用,已知直線
與橢圓E:
有且只有一個公共點.
(1)求的值;
(2)設O為坐標原點,過橢圓E上的兩點A、B分別作該橢圓的兩條切線,且
與
交于點M
①設,直線AB、OM的斜率分別為
,求證:
為定值;
②設,求△OAB面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某快餐連鎖店招聘外賣騎手,該快餐連鎖店提供了兩種日工資方案:方案①:規定每日底薪50元,快遞業務每完成一單提成3元;方案②:規定每日底薪100元,快遞業務的前44單沒有提成,從第45單開始,每完成一單提成5元.該快餐連鎖店記錄了每天騎手的人均業務量.現隨機抽取100天的數據,將樣本數據分為,
,
,
,
,
,
七組,整理得到如圖所示的頻率分布直方圖.
(1)隨機選取一天,估計這一天該連鎖店的騎手的人均日快遞業務量不少于65單的概率;
(2)若騎手甲、乙選擇了日工資方案①,丙、丁選擇了日工資方案②.現從上述4名騎手中隨機選取2人,求至少有1名騎手選擇方案①的概率;
(3)若從人均日收入的角度考慮,請你利用所學的統計學知識為新聘騎手做出日工資方案的選擇,并說明理由.(同組中的每個數據用該組區間的中點值代替)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com