精英家教網 > 高中數學 > 題目詳情

【題目】在交通工程學中,常作如下定義:交通流量(輛/小時):單位時間內通過道路上某一橫斷面的車輛數;車流速度(千米/小時):單位時間內車流平均行駛過的距離;車流密度(輛/千米):單位長度道路上某一瞬間所存在的車輛數. 一般的,滿足一個線性關系,即(其中是正數),則以下說法正確的是

A. 隨著車流密度增大,車流速度增大

B. 隨著車流密度增大,交通流量增大

C. 隨著車流密度增大,交通流量先減小,后增大

D. 隨著車流密度增大,交通流量先增大,后減小

【答案】D

【解析】

先閱讀題意,再結合簡單的合情推理判斷即可得解.

,得:

由單位關系,得:QVK,

可以是看成是QV的二次函數,開口向下,

圖象先增大,再減小,

所以,隨著車流速度V的增大,交通流量Q先增大、后減小。

故答案為:D.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】“割圓術”是劉徽最突出的數學成就之一,他在《九章算術注》中提出割圓術,并作為計算圓的周長,面積已經圓周率的基礎,劉徽把圓內接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個近似數值,這個結果是當時世界上圓周率計算的最精確數據.如圖,當分割到圓內接正六邊形時,某同學利用計算機隨機模擬法向圓內隨機投擲點,計算得出該點落在正六邊形內的頻率為0.8269,那么通過該實驗計算出來的圓周率近似值為(參考數據:

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓的方程為,若拋物線過點,且以圓0的切線為準線,為拋物線的焦點,點的軌跡為曲線.

(1)求曲線的方程;

(2)過點作直線交曲線兩點,關于軸對稱,請問:直線是否過軸上的定點,如果不過請說明理由,如果過定點,請求出定點的坐標

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C的中心在原點,焦點在x軸上,短軸長為,離心率為

求橢圓C的方程;

若過點的直線與橢圓C交于A,B兩點,且P點平分線段AB,求直線AB的方程;

一條動直線l與橢圓C交于不同兩點M,NO為坐標原點,的面積為求證:為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)若函數時取得極值,求實數的值;

2)若對任意恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知a是實數,函數

1)若,求a的值及曲線在點處的切線方程;

2)討論函數在區間上的單調性.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在全國第五個扶貧日到來之前,某省開展精準扶貧,攜手同行的主題活動,某貧困縣調查基層干部走訪貧困戶數量.甲鎮有基層干部60人,乙鎮有基層干部60人,丙鎮有基層干部80人,每人都走訪了若干貧困戶,按照分層抽樣,從甲、乙、丙三鎮共選20名基層干部,統計他們走訪貧困戶的數量,并將走訪數量分成,,,5組,繪制成如圖所示的頻率分布直方圖.

1)求這20人中有多少人來自丙鎮,并估計甲、乙、丙三鎮的基層干部走訪貧困戶戶數的中位數(精確到整數位);

2)如果把走訪貧困戶達到或超過35戶視為工作出色,求選出的20名基層干部中工作出色的人數,并從中選2人做交流發言,求這2人中至少有一人走訪的貧困戶在的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在全國第五個扶貧日到來之前,某省開展精準扶貧,攜手同行的主題活動,某貧困縣調查基層干部走訪貧困戶數量.甲鎮有基層干部60人,乙鎮有基層干部60人,丙鎮有基層干部80人,每人都走訪了若干貧困戶,按照分層抽樣,從甲、乙、丙三鎮共選20名基層干部,統計他們走訪貧困戶的數量,并將走訪數量分成,,,5組,繪制成如圖所示的頻率分布直方圖.

1)求這20人中有多少人來自丙鎮,并估計甲、乙、丙三鎮的基層干部走訪貧困戶戶數的中位數(精確到整數位);

2)如果把走訪貧困戶達到或超過35戶視為工作出色,求選出的20名基層干部中工作出色的人數,并從中選2人做交流發言,求這2人中至少有一人走訪的貧困戶在的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在我國古代數學名著《九章算術》中,將四個面都是直角三角形的四面體稱為鱉臑,在鱉臑中,平面,且的中點,則異面直線所成角的正弦值為(

A.B.C.D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视