【題目】已知函數f(x)=x-lnx,g(x)=x2-ax.
(1)求函數f(x)在區間[t,t+1](t>0)上的最小值m(t);
(2)令h(x)=g(x)-f(x),A(x1,h(x1)),B(x2,h(x2))(x1≠x2)是函數h(x)圖像上任意兩點,且滿足>1,求實數a的取值范圍;
(3)若x∈(0,1],使f(x)≥成立,求實數a的最大值.
【答案】(1)m(t)=(2)a≤2
-2.(3)a≤2
-2.
【解析】
(1)是研究在動區間上的最值問題,這類問題的研究方法就是通過討論函數的極值點與所研究的區間的大小關系來進行求解.
(2)注意到函數h(x)的圖像上任意不同兩點A,B連線的斜率總大于1,等價于h(x1)-h(x2)<x1-x2(x1<x2)恒成立,從而構造函數F(x)=h(x)-x在(0,+∞)上單調遞增,進而等價于F′(x)≥0在(0,+∞)上恒成立來加以研究.
(3)用處理恒成立問題來處理有解問題,先分離變量轉化為求對應函數的最值,得到a≤,再利用導數求函數M(x)=
的最大值,這要用到二次求導,才可確定函數單調性,進而確定函數最值.
(1) f′(x)=1-,x>0,
令f′(x)=0,則x=1.
當t≥1時,f(x)在[t,t+1]上單調遞增,f(x)的最小值為f(t)=t-lnt;
當0<t<1時,f(x)在區間(t,1)上為減函數,在區間(1,t+1)上為增函數,f(x)的最小值為f(1)=1.
綜上,m(t)=
(2)h(x)=x2-(a+1)x+lnx,
不妨取0<x1<x2,則x1-x2<0,
則由,可得h(x1)-h(x2)<x1-x2,
變形得h(x1)-x1<h(x2)-x2恒成立.
令F(x)=h(x)-x=x2-(a+2)x+lnx,x>0,
則F(x)=x2-(a+2)x+lnx在(0,+∞)上單調遞增,
故F′(x)=2x-(a+2)+≥0在(0,+∞)上恒成立,
所以2x+≥a+2在(0,+∞)上恒成立.
因為2x+≥2
,當且僅當x=
時取“=”,
所以a≤2-2.
(3)因為f(x)≥,所以a(x+1)≤2x2-xlnx.
因為x∈(0,1],則x+1∈(1,2],所以x∈(0,1],使得a≤成立.
令M(x)=,則M′(x)=
.
令y=2x2+3x-lnx-1,則由y′==0 可得x=
或x=-1(舍).
當x∈時,y′<0,則函數y=2x2+3x-lnx-1在
上單調遞減;
當x∈時,y′>0,則函數y=2x2+3x-lnx-1在
上單調遞增.
所以y≥ln4->0,
所以M′(x)>0在x∈(0,1]時恒成立,
所以M(x)在(0,1]上單調遞增.
所以只需a≤M(1),即a≤1.
所以實數a的最大值為1.
科目:高中數學 來源: 題型:
【題目】為考查某種疫苗預防疾病的效果,進行動物實驗,得到統計數據如下表:
未發病 | 發病 | 合計 | |
未注射疫苗 | 40 | ||
注射疫苗 | 60 | ||
合計 | 100 | 100 | 200 |
現從所有試驗動物中任取一只,取到“注射疫苗”動物的概率為.
(1)求列聯表中的數據
的值;
(2)在圖中繪制發病率的條形統計圖,并判斷疫苗是否有效?
(3)在出錯概率不超過的條件下能否認為疫苗有效?
附:.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個幾何體的平面展開圖如圖所示,其中四邊形 ABCD 為正方形, E F 分別為PB PC 的中點,在此幾何體中,下面結論中一定正確的是( )
A.直線 AE 與直線 DF 平行B.直線 AE 與直線 DF 異面
C.直線 BF 和平面 PAD 相交D.直線 DF 平面 PBC
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖為我國數學家趙爽(約3世紀初)在為《周牌算經》作注時驗證勾股定理的示意圖,現在提供6種不同的顏色給其中5個小區域涂色,規定每個區域只涂一種顏色,相鄰區域顏色不同,則,
區域涂同色的概率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
,其中
.
(1)求過點和函數
的圖像相切的直線方程;
(2)若對任意,有
恒成立,求
的取值范圍;
(3)若存在唯一的整數,使得
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,底面ABCD是邊長為3的正方形,平面ADEF⊥平面ABCD,AF∥DE,AD⊥DE,AF=,DE=
.
(1)求直線CA與平面BEF所成角的正弦值;
(2)在線段AF上是否存在點M,使得二面角MBED的大小為60°?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com