【題目】已知函數 f(x)=2sin2ωx+2sinωxcosωx﹣1(ω>0)的周期為π.
(Ⅰ)求ω的值;
(Ⅱ)求函數f(x)在上的值域.
【答案】【解答】(Ⅰ)∵函數 f(x)=2sin2ωx+2sinωxcosωx﹣1=sin2ωx﹣cos2ωx= sin(2ωx﹣
)(ω>0),
故該函數的周期為 =π,∴ω=1,f(x)=
sin(2x﹣
).
(Ⅱ)在[ ,
]上,2x﹣
∈[
,
],
∵sin =sin(
﹣
)=sin
cos
﹣cos
sin
=
,
sin(2x﹣ )∈[
,
],∴f(x)∈[
,1].
【解析】(Ⅰ)利用三角恒等變換化簡函數的解析式,再利用正弦函數的周期性求出ω的值。
(Ⅱ)利用正弦函數的定義域和值域,求得函數f(x)在上的值域.
【考點精析】關于本題考查的三角函數的最值,需要了解函數,當
時,取得最小值為
;當
時,取得最大值為
,則
,
,
才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】已知橢圓 經過點
,其離心率
.
(Ⅰ)求橢圓 的方程;
(Ⅱ)設動直線 與橢圓
相切,切點為
,且
與直線
相交于點
.
試問:在 軸上是否存在一定點,使得以
為直徑的圓恒過該定點?若存在,
求出該點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2﹣alnx+x(a∈R)
(Ⅰ)當a=1時,求曲線y=f(x)在點A(1,f(1))處的切線方程;
(Ⅱ)討論函數y=f(x)的單調性.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx,g(x)= +bx(a≠0)
(Ⅰ)若a=﹣2時,函數h(x)=f(x)﹣g(x)在其定義域內是增函數,求b的取值范圍;
(Ⅱ)在(Ⅰ)的結論下,設φ(x)=e2x+bex , x∈[0,ln2],求函數φ(x)的最小值;
(Ⅲ)設函數f(x)的圖象C1與函數g(x)的圖象C2交于點P、Q,過線段PQ的中點R作x軸的垂線分別交C1、C2于點M、N,問是否存在點R,使C1在M處的切線與C2在N處的切線平行?若存在,求出R的橫坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)=|ax﹣1|.
(Ⅰ)若f(x)≤2的解集為[﹣6,2],求實數a的值;
(Ⅱ)當a=2時,若存在x∈R,使得不等式f(2x+1)﹣f(x﹣1)≤7﹣3m成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知菱形 ABCD 中,對角線 AC 與 BD 相交于一點 O,∠A=60°,將△BDC 沿著 BD 折起得△BDC',連結 AC'.
(Ⅰ)求證:平面 AOC'⊥平面 ABD;
(Ⅱ)若點 C'在平面 ABD 上的投影恰好是△ABD 的重心,求直線 CD 與底面 ADC'所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an},{bn}滿足a1=2,b1=4,且 2bn=an+an+1 , an+12=bnbn+1 .
(Ⅰ)求 a 2 , a3 , a4 及b2 , b3 , b4;
(Ⅱ)猜想{an},{bn} 的通項公式,并證明你的結論;
(Ⅲ)證明:對所有的 n∈N* ,
…
<
<
sin
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax(a>0,a≠1)在區間[﹣1,2]上的最大值為8,最小值為m.若函數g(x)=(3﹣10m) 是單調增函數,則a= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正四棱錐P﹣ABCD中,AB=2,PA= ,E是棱PC的中點,過AE作平面分別與棱PB、PD交于M、N兩點.
(1)若PM= PB,PN=λPD,求λ的值;
(2)求直線PA與平面AMEN所成角的正弦值的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com