【題目】已知數列{an},{bn}滿足a1=2,b1=4,且 2bn=an+an+1 , an+12=bnbn+1 .
(Ⅰ)求 a 2 , a3 , a4 及b2 , b3 , b4;
(Ⅱ)猜想{an},{bn} 的通項公式,并證明你的結論;
(Ⅲ)證明:對所有的 n∈N* ,
…
<
<
sin
.
【答案】解:(I)令n=1得 ,解得
,
令n=2得 ,解得
,
令n=3得 ,解得
.
(II)猜想:an=n(n+1),bn=(n+1)2.
證明:當n=1時,猜想顯然成立,
假設n=k(k≥1)猜想成立,即ak=k(k+1),bk=(k+1)2,
∵2bk=ak+ak+1,∴ak+1=2bk﹣ak=2(k+1)2﹣k(k+1)=(k+1)(k+2),
∵ak+12=bkbk+1,∴bk+1= =(k+2)2,
∴當n=k+1時,猜想成立,
∴an=n(n+1),bn=(n+1)2,n∈N+.
(III)證明:由(II)可知 =
,
于是原不等式等價于 …
<
<
sin
,
(i)先證 …
<
,
∵4n2﹣1<4n2,∴(2n+1)(2n﹣1)<4n2,
∴(2n﹣1)2(2n+1)<4n2(2n﹣1),
即( )2<
,即
<
,
∴ …
<
…
=
,
(ii)再證 <
sin
.
令 =x,則0<x≤
<
,
設f(x)=x﹣ sinx,則f′(x)=1﹣
cosx<0,
∴f(x)在(0, )上單調遞減,
∴f(x)<f(0)=0,即x sinx,
∴ <
sin
.
綜上,對所有的 n∈N*,
…
<
<
sin
.
【解析】(I)利用特值法分別令n=1,n=2,n=3代入,即可求的答案;
(Ⅱ)猜想:an=n(n+1),bn=(n+1)2.利用數學歸納法證明猜想;
(III)由(II)得到證明的猜想可知,。用不等式的放縮即可證明。
【考點精析】認真審題,首先需要了解歸納推理(根據一類事物的部分對象具有某種性質,退出這類事物的所有對象都具有這種性質的推理,叫做歸納理).
科目:高中數學 來源: 題型:
【題目】設集合M={x||x|<1},N={y|y=2x , x∈M},則集合R(M∩N)等于( )
A.(﹣∞, ]
B.( ,1)
C.(﹣∞, ]∪[1,+∞)
D.[1,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】x,y 滿足約束條件 ,若 z=y﹣ax 取得最大值的最優解不唯一,則實數 a 的值為( )
A. 或﹣1
B.2 或
C.2 或1
D.2 或﹣1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數上的一個最高點的坐標為
,由此點到相鄰最低點間的曲線與x軸交于點
,若
.
(1)求的解析式.
(2)求在
上的值域.
(3)若對任意實數,不等式
在
上恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知△ABC的外接圓半徑為1,角A,B,C的對邊分別為a,b,c,且2acos A=ccos B+bcos C.
(Ⅰ)求A;
(Ⅱ)若b2+c2=7,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知常數a>0,函數f(x)=ln(1+ax)﹣ .
(Ⅰ)討論f(x)在區間(0,+∞)上的單調性;
(Ⅱ)若f(x)存在兩個極值點x1 , x2 , 且f(x1)+f(x2)>0,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】環境監測中心監測我市空氣質量,每天都要記錄空氣質量指數(指數采取10分制,保留一位小數).現隨機抽取20天的指數(見下表),將指數不低于8.5視為當天空氣質量優良.
天數 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
空氣質量指數 | 7.1 | 8.3 | 7.3 | 9.5 | 8.6 | 7.7 | 8.7 | 8.8 | 8.7 | 9.1 |
天數 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
空氣質量指數 | 7.4 | 8.5 | 9.7 | 8.4 | 9.6 | 7.6 | 9.4 | 8.9 | 8.3 | 9.3 |
(Ⅰ)求從這20天隨機抽取3天,至少有2天空氣質量為優良的概率;
(Ⅱ)以這20天的數據估計我市總體空氣質量(天數很多).若從我市總體空氣質量指數中隨機抽取3天的指數,用X表示抽到空氣質量為優良的天數,求X的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an},a1=2,a2=6,且滿足=2(n≥2且n∈N+)
(1)證明:新數列{an+1-an}是等差數列,并求出an的通項公式
(2)令bn=,設數列{bn}的前n項和為Sn,證明:S2n-Sn<5
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com