精英家教網 > 高中數學 > 題目詳情

【題目】已知數列{an},{bn}滿足a1=2,b1=4,且 2bn=an+an+1 , an+12=bnbn+1
(Ⅰ)求 a 2 , a3 , a4 及b2 , b3 , b4;
(Ⅱ)猜想{an},{bn} 的通項公式,并證明你的結論;
(Ⅲ)證明:對所有的 n∈N* , sin

【答案】解:(I)令n=1得 ,解得 ,

令n=2得 ,解得 ,

令n=3得 ,解得

(II)猜想:an=n(n+1),bn=(n+1)2

證明:當n=1時,猜想顯然成立,

假設n=k(k≥1)猜想成立,即ak=k(k+1),bk=(k+1)2,

∵2bk=ak+ak+1,∴ak+1=2bk﹣ak=2(k+1)2﹣k(k+1)=(k+1)(k+2),

∵ak+12=bkbk+1,∴bk+1= =(k+2)2,

∴當n=k+1時,猜想成立,

∴an=n(n+1),bn=(n+1)2,n∈N+

(III)證明:由(II)可知 = ,

于是原不等式等價于 sin ,

(i)先證 ,

∵4n2﹣1<4n2,∴(2n+1)(2n﹣1)<4n2,

∴(2n﹣1)2(2n+1)<4n2(2n﹣1),

即( 2 ,即

= ,

(ii)再證 sin

=x,則0<x≤

設f(x)=x﹣ sinx,則f′(x)=1﹣ cosx<0,

∴f(x)在(0, )上單調遞減,

∴f(x)<f(0)=0,即x sinx,

sin

綜上,對所有的 n∈N*, sin


【解析】(I)利用特值法分別令n=1,n=2,n=3代入,即可求的答案;
(Ⅱ)猜想:an=n(n+1),bn=(n+1)2.利用數學歸納法證明猜想;
(III)由(II)得到證明的猜想可知,。用不等式的放縮即可證明。
【考點精析】認真審題,首先需要了解歸納推理(根據一類事物的部分對象具有某種性質,退出這類事物的所有對象都具有這種性質的推理,叫做歸納理).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設集合M={x||x|<1},N={y|y=2x , x∈M},則集合R(M∩N)等于(
A.(﹣∞, ]
B.( ,1)
C.(﹣∞, ]∪[1,+∞)
D.[1,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】x,y 滿足約束條件 ,若 z=y﹣ax 取得最大值的最優解不唯一,則實數 a 的值為( )
A. 或﹣1
B.2 或
C.2 或1
D.2 或﹣1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 f(x)=2sin2ωx+2sinωxcosωx﹣1(ω>0)的周期為π.
(Ⅰ)求ω的值;
(Ⅱ)求函數f(x)在上的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數上的一個最高點的坐標為,由此點到相鄰最低點間的曲線與x軸交于點,若.

(1)求的解析式.

(2)求上的值域.

(3)若對任意實數,不等式上恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知△ABC的外接圓半徑為1,角A,B,C的對邊分別為a,b,c,且2acos A=ccos B+bcos C.
(Ⅰ)求A;
(Ⅱ)若b2+c2=7,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知常數a>0,函數f(x)=ln(1+ax)﹣
(Ⅰ)討論f(x)在區間(0,+∞)上的單調性;
(Ⅱ)若f(x)存在兩個極值點x1 , x2 , 且f(x1)+f(x2)>0,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】環境監測中心監測我市空氣質量,每天都要記錄空氣質量指數(指數采取10分制,保留一位小數).現隨機抽取20天的指數(見下表),將指數不低于8.5視為當天空氣質量優良.

天數

1

2

3

4

5

6

7

8

9

10

空氣質量指數

7.1

8.3

7.3

9.5

8.6

7.7

8.7

8.8

8.7

9.1

天數

11

12

13

14

15

16

17

18

19

20

空氣質量指數

7.4

8.5

9.7

8.4

9.6

7.6

9.4

8.9

8.3

9.3

(Ⅰ)求從這20天隨機抽取3天,至少有2天空氣質量為優良的概率;
(Ⅱ)以這20天的數據估計我市總體空氣質量(天數很多).若從我市總體空氣質量指數中隨機抽取3天的指數,用X表示抽到空氣質量為優良的天數,求X的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an},a1=2,a2=6,且滿足=2(n≥2且n∈N+)

(1)證明:新數列{an+1-an}是等差數列,并求出an的通項公式

(2)令bn=,設數列{bn}的前n項和為Sn,證明:S2n-Sn<5

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视