【題目】已知函數上的一個最高點的坐標為
,由此點到相鄰最低點間的曲線與x軸交于點
,若
.
(1)求的解析式.
(2)求在
上的值域.
(3)若對任意實數,不等式
在
上恒成立,求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐 的底面
為正方形,
⊥底面
,
分別是
的中點,
.
(Ⅰ)求證 ∥平面
;
(Ⅱ)求直線 與平面
所成的角;
(Ⅲ)求四棱錐 的外接球的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若的部分圖象如圖所示.
(1)求函數的解析式;
(2)將的圖象向左平移
個單位長度得到
的圖象,若
圖象的一個對稱軸為
,求
的最小值;
(3)在第(2)問的前提下,求函數在
上的單調區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)=|ax﹣1|.
(Ⅰ)若f(x)≤2的解集為[﹣6,2],求實數a的值;
(Ⅱ)當a=2時,若存在x∈R,使得不等式f(2x+1)﹣f(x﹣1)≤7﹣3m成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在著名的漢諾塔問題中有三根針和套在一根針上的若干金屬片,按下列規則,把金屬片從一根針上全部移到另一根針上:①每次只能移動一個金屬片;②在每次移動過程中,每根針上較大的金屬片不能放在較小的金屬片上面.將n個金屬片從1號針移到3號針最少需要移動的次數記為f(n),則f(6)=( )
A.31
B.33
C.63
D.65
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an},{bn}滿足a1=2,b1=4,且 2bn=an+an+1 , an+12=bnbn+1 .
(Ⅰ)求 a 2 , a3 , a4 及b2 , b3 , b4;
(Ⅱ)猜想{an},{bn} 的通項公式,并證明你的結論;
(Ⅲ)證明:對所有的 n∈N* ,
…
<
<
sin
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《九章算術》中,將底面為長方形且有一條側棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.如圖,在陽馬P﹣ABCD中,側棱PD⊥底面ABCD,且PD=CD,過棱PC的中點E,作EF⊥PB交PB于點F,連接DE,DF,BD,BE.
(1)證明:PB⊥平面DEF.試判斷四面體DBEF是否為鱉臑,若是,寫出其每個面的直角(只需寫出結論);若不是,說明理由;
(2)若面DEF與面ABCD所成二面角的大小為 ,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在底面是菱形的四棱錐P﹣ABCD中,∠ABC=60°,PA=AC=a,PB=PD= ,點E在PD上,且PE:ED=2:1.
(Ⅰ)證明PA⊥平面ABCD;
(Ⅱ)求以AC為棱,EAC與DAC為面的二面角θ的大;
(Ⅲ)在棱PC上是否存在一點F,使BF∥平面AEC?證明你的結論.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com