【題目】已知函數曲線
在點
處的切線方程為
.
(1)求;
(2)若存在實數,對任意的
,都有
,求整數
的最小值.
科目:高中數學 來源: 題型:
【題目】如圖,已知梯形中,
,
,
,四邊形
為矩形,
,平面
平面
.
(Ⅰ)求證: 平面
;
(Ⅱ)求平面與平面
所成銳二面角的余弦值;
(Ⅲ)在線段上是否存在點
,使得直線
與平面
所成角的正弦值為
,若存在,求出線段
的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD= .
(Ⅰ)求證:PD⊥平面PAB;
(Ⅱ)求直線PB與平面PCD所成角的正弦值;
(Ⅲ)在棱PA上是否存在點M,使得BM∥平面PCD?若存在,求 的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x﹣a|,g(x)=x2+2ax+1(a為正常數),且函數f(x)和g(x)的圖象與y軸的交點重合.
(1)求a實數的值
(2)若h(x)=f(x)+b (b為常數)試討論函數h(x)的奇偶性;
(3)若關于x的不等式f(x)﹣2 >a有解,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某租賃公司擁有汽車100輛.當每輛車的月租金為3000元時,可全部租出.當每輛車的月租金每增加50元時,未租出的車將會增加一輛.租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.
(Ⅰ)當每輛車的月租金定為3600元時,能租出多少輛車?
(Ⅱ)當每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知中心在坐標原點O,焦點在軸上,離心率為
的橢圓C過點
(Ⅰ)求橢圓C的方程;
(Ⅱ)設不過坐標原點O的直線與橢圓C交于P,Q兩點,若,證明:點O到直線
的距離為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓曲線方程為 ,兩焦點分別為F1 , F2 .
(1)若n=﹣1,過左焦點為F1且斜率為 的直線交圓錐曲線于點A,B,求△ABF2的周長.
(2)若n=4,P圓錐曲線上一點,求PF1PF2的最大值和最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=﹣x2+ax+b,且f(4)=﹣3.
(1)若函數f(x)在區間[2,+∞)上遞減,求實數b的取值范圍;
(2)若函數f(x)的圖象關于直線x=1對稱,且關于x的方程f(x)=log2m在區間[﹣3,3]上有解,求m的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com