【題目】以直角坐標系的原點O為極點,x軸的正半軸為極軸建立極坐標系.
(1)將直線l: (t為參數)化為極坐標方程;
(2)設P是(1)中直線l上的動點,定點A( ,
),B是曲線ρ=﹣2sinθ上的動點,求|PA|+|PB|的最小值.
【答案】
(1)解:由直線l: (t為參數)消去參數t,可得x+y=
,化為極坐標方程ρcosθ+ρsinθ=
(2)解:定點A( ,
),化為A(1,1).
曲線ρ=﹣2sinθ化為ρ2=﹣2ρsinθ,∴直角坐標方程為:x2+y2=﹣2y,
配方為x2+(y+1)2=1.
可得圓心C(0,﹣1).
連接AC交直線l于點P,交⊙C于點B,
|AC|= =
,
∴|PA|+|PB|的最小值=|AC|﹣r= ﹣1.
【解析】(1)由直線l: (t為參數)消去參數t,可得x+y=
,利用
即可化為極坐標方程;(2)定點A(
,
),化為A(1,1).曲線ρ=﹣2sinθ化為ρ2=﹣2ρsinθ,可得直角坐標方程:x2+(y+1)2=1.可得圓心C(0,﹣1).連接AC交直線l于點P,交⊙C于點B,可得|PA|+|PB|的最小值=|AC|﹣r.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=xlnx,g(x)=﹣x2+ax﹣2
(Ⅰ)求函數f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)若函數y=f(x)與y=g(x)的圖象恰有一個公共點,求實數a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=Asin(ωx+φ),x∈R,(ω>0,﹣ <φ<
)的部分圖象如圖所示.
(Ⅰ)確定A,ω,φ的值,并寫出函數f(x)的解析式;
(Ⅱ)描述函數y=f(x)的圖象可由函數y=sinx的圖象經過怎樣的變換而得到;
(Ⅲ)若f( )=
(
<α<
),求tan2(α﹣
).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某大學餐飲中心為了了解新生的飲食習慣,在全校一年級學生中進行了抽樣調查,調查結果如下表所示:
喜歡甜品 | 不喜歡甜品 | 合計 | |
南方學生 | 60 | 20 | 80 |
北方學生 | 10 | 10 | 20 |
合計 | 70 | 30 | 100 |
(1)根據表中數據,問是否有95%的把握認為“南方學生和北方學生在選用甜品的飲食習慣方面有差異”;
(2)已知在被調查的北方學生中有5名數學系的學生,其中2名喜歡甜品,現在從這5名學生中隨機抽取3人,求至多有1人喜歡甜品的概率. 附:K2=
P(K2>k0) | 0.10 | 0.05 |
| 0.005 |
k0 | 2.706 | 3.841 |
| 7.879 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在長方體ABCD﹣A1B1C1D1中,AA1=2AB=2BC,E,F,E1分別是棱AA1 , BB1 , A1B1的中點.
(1)求證:CE∥平面C1E1F;
(2)求證:平面C1E1F⊥平面CEF.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 (其中ω>0)
(I)求函數f(x)的值域;
(II)若對任意的a∈R,函數y=f(x),x∈(a,a+π]的圖象與直線y=﹣1有且僅有兩個不同的交點,試確定ω的值(不必證明),并求函數y=f(x),x∈R的單調增區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線 上的一點
的橫坐標為
,焦點為
,且
,直線
與拋物線
交于
兩點.
(1)求拋物線 的方程;
(2)若 是
軸上一點,且△
的面積等于
,求點
的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com