【題目】德國數學家科拉茨1937年提出了一個著名的猜想:任給一個正整數n,如果n是偶數,就將它減半(即);如果n是奇數,則將它乘3加1(即3n+1),不斷重復這樣的運算,經過有限步后,一定可以得到1. 對于科拉茨猜想,目前誰也不能證明,也不能否定,現在請你研究:如果對正整數n(首項)按照上述規則施行變換后的第8項為1(注:l可以多次出現),則n的所有不同值的個數為
A. 4 B. 6 C. 8 D. 32
科目:高中數學 來源: 題型:
【題目】某工廠生產甲、乙兩種產品所得利潤分別為和
(萬元),它們與投入資金
(萬元)的關系有如下公式:
,
,今將200萬元資金投入生產甲、乙兩種產品,并要求對甲、乙兩種產品的投入資金都不低于25萬元.
(Ⅰ)設對乙種產品投入資金(萬元),求總利潤
(萬元)關于
的函數關系式及其定義域;
(Ⅱ)如何分配投入資金,才能使總利潤最大,并求出最大總利潤.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法中:
①若,滿足
,則
的最大值為4;
②若,則函數
的最小值為3;
③若,滿足
,則
的最大值為
;
④若,滿足
,則
的最小值為2;
⑤函數的最小值為9.
正確的有________.(把你認為正確的序號全部寫上)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知變量之間的線性回歸方程為
,且變量
之間的一組相關數據如表所示,則下列說法錯誤的是( 。
x | 6 | 8 | 10 | 12 |
y | 6 | m | 3 | 2 |
A. 變量之間呈現負相關關系
B. 的值等于5
C. 變量之間的相關系數
D. 由表格數據知,該回歸直線必過點(9,4)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著人們生活水平的不斷提高,家庭理財越來越引起人們的重視.某一調查機構隨機調查了5個家庭的月收入與月理財支出(單位:元)的情況,如下表所示:
月收入 | 8 | 10 | 9 | 7 | 11 |
月理財支出 |
(I)在下面的坐標系中畫出這5組數據的散點圖;
(II)根據上表提供的數據,用最小二乘法求出關于
的線性回歸方程
;
(III)根據(II)的結果,預測當一個家庭的月收入為元時,月理財支出大約是多少元?
(附:回歸直線方程中,
,
.)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在四棱錐S ABCD中,平面SAD⊥平面ABCD.四邊形ABCD為正方形,
(1)求證:CD⊥平面SAD.
(2)若SA=SD,點M為BC的中點,在棱SC上是否存在點N,使得平面DMN⊥平面ABCD?若存在,請說明其位置,并加以證明;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax4lnx+bx4﹣c(x>0)在x=1處取得極值﹣3﹣c,其中a,b,c為常數.
(1)試確定a,b的值;
(2)討論函數f(x)的單調區間;
(3)若對任意x>0,不等式f(x)≥﹣2c2恒成立,求c的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,第一象限內有定點
和射線
,已知
,
的傾斜角分別為
,
,
,
,
軸上的動點
與
,
共線.
(1)求點坐標(用
表示);
(2)求面積
關于
的表達式
;
(3)求面積的最小時直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數,下列說法正確的是____________.
①函數的定義域為
;
②函數為奇函數;
③函數的值域為
;
④函數在定義域上為增函數;
⑤對于,均有
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com