【題目】2018年9月24日,阿貝爾獎和菲爾茲獎雙料得主、英國著名數學家阿蒂亞爵士宣布自己證明了黎曼猜想,這一事件引起了數學界的震動.在1859年,德國數學家黎曼向科學院提交了題目為《論小于某值的素數個數》的論文并提出了一個命題,也就是著名的黎曼猜想.在此之前,著名數學家歐拉也曾研究過這個問題,并得到小于數字的素數個數大約可以表示為
的結論.若根據歐拉得出的結論,估計10000以內的素數的個數為(素數即質數,
,計算結果取整數)
A. 1089 B. 1086 C. 434 D. 145
科目:高中數學 來源: 題型:
【題目】“開門大吉”是某電視臺推出的游戲節目,選手面對1號8扇大門,依次按響門上的門鈴,門鈴會播放一段音樂(將一首經典流行歌曲以單音色旋律的方式演繹),選手需正確回答出這首歌的名字,方可獲得該扇門對應的家庭夢想基金,在一次場外調查中,發現參賽選手多數分為兩個年齡段:
;
(單位:歲),其猜對歌曲名稱與否的人數如圖所示.
(Ⅰ)寫出列聯表;判斷是否有
的把握認為猜對歌曲名稱是否與年齡有關;說明你的理由;(如表的臨界值表供參考)
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
(Ⅱ)現計劃在這次場外調查中按年齡段用分層抽樣的方法選取6名選手,并抽取3名幸運選手,求3名幸運選手中恰好有一人在歲之間的概率.
(參考公式: ,其中
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐中,底面
為矩形,側面
為正三角形,
,
,平面
平面
,
為棱
上一點(不與
、
重合),平面
交棱
于點
.
(1)求證:;
(2)若二面角的余弦值為
,求點
到平面
的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】曲線.給出下列結論:
①曲線關于原點對稱;
②曲線上任意一點到原點的距離不小于1;
③曲線只經過
個整點(即橫縱坐標均為整數的點).
其中,所有正確結論的序號是( )
A.①②B.②C.②③D.③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線,拋物線
上橫坐標為
的點到焦點
的距離為
.
(Ⅰ)求拋物線的方程及其準線方程;
(Ⅱ)過的直線
交拋物線
于不同的兩點
,交直線
于點
,直線
交直線
于點
. 是否存在這樣的直線
,使得
? 若不存在,請說明理由;若存在,求出直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,圓
的參數方程為
(
為參數),以直角坐標系的原點
為極點,
軸正半軸為極軸建立極坐標系.
(1)求圓的極坐標方程;
(2)設曲線的極坐標方程為
,曲線
的極坐標方程為
,求三條曲線
,
,
所圍成圖形的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
,過橢圓右焦點的最短弦長是
,且點
在橢圓上.
(1)求該橢圓的標準方程;
(2)設動點滿足:
,其中
,
是橢圓上的點,直線
與直線
的斜率之積為
,求點
的軌跡方程并判斷是否存在兩個定點
、
,使得
為定值?若存在,求出定值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在棱長為的正方體
中,
為
的中點,
為
上任意一點,
,
為
上兩動點,且
的長為定值,則下面四個值中不是定值的是( )
A.點到平面
的距離B.直線
與平面
所成的角
C.三棱錐的體積D.二面角
的大小
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com