【題目】已知橢圓的左,右焦點分別為
,離心率為
,
是
上的一個動點.當
是
的上頂點時,
的面積為
.
(1)求的方程;
(2)設斜率存在的直線與
的另一個交點為
.若存在點
,使得
,求
的取值范圍.
科目:高中數學 來源: 題型:
【題目】如圖是某地區2000年至2016年環境基礎設施投資額(單位:億元)的折線圖.
為了預測該地區2018年的環境基礎設施投資額,建立了與時間變量
的兩個線性回歸模型.根據2000年至2016年的數據(時間變量
的值依次為1,2,…,17)建立模型
①;
根據2010年至2016年的數據(時間變量的值依次為1,2,…,7)建立模型
②.
利用這兩個模型,該地區2018年的環境基礎設施投資額的預測值分別為_____,_____;并且可以判斷利用模型_____得到的預測值更可靠.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了調查民眾對國家實行“新農村建設”政策的態度,現通過網絡問卷隨機調查了年齡在20周歲至80周歲的100人,他們年齡頻數分布和支持“新農村建設”人數如下表:
(1)根據上述統計數據填下面的2×2列聯表,并判斷是否有95%的把握認為以50歲為分界點對“新農村建設”政策的支持度有差異;
(2)現從年齡在[70,80]內的5名被調查人中任選兩人去參加座談會,求選出兩人中恰有一人支持新農村建設的概率.
參考數據:
參考公式:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若在兩個成語中,一個成語的末字恰是另一成語的首字,則稱這兩個成語有頂真關系,現從分別貼有成語“人定勝天”、“爭先恐后”、“一馬當先”、“天馬行空”、“先發制人”的5張大小形狀完全相同卡片中,任意抽取2張,則這2張卡片上的成語有頂真關系的概率為( 。
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知極坐標系的極點在平面直角坐標系的原點處,極軸與
軸的非負半軸重合,且長度單位相同,直線
的極坐標方程為
,曲線
(
為參數).其中
.
(1)試寫出直線的直角坐標方程及曲線
的普通方程;
(2)若點為曲線
上的動點,求點
到直線
距離的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學為了了解全校學生的上網情況,在全校采用隨機抽樣的方法抽取了40名學生(其中男女生人數恰好各占一半)進行問卷調查,并進行了統計,按男女分為兩組,再將每組學生的月上網次數為5組: ,
,
,
,
,得到如圖所示的頻率分布直方圖:
(Ⅰ)寫出的值;
(Ⅱ)求在抽取的40名學生中月上網次數不少于15次的學生人數;
(Ⅲ)在抽取的40名學生中,從月上網次數不少于20次的學生中隨機抽取2人,求至少抽到1名女生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】唐三彩是中國古代陶瓷燒制工藝的珍品,它吸取了中國國畫、雕塑等工藝美術的特點,在中國文化中占有重要的歷史地位,在陶瓷史上留下了濃墨重彩的一筆.唐三彩的生產至今已有1300多年的歷史,制作工藝十分復雜,而且優質品檢驗異常嚴格,檢驗方案是:先從燒制的這批唐三彩中任取 3件作檢驗,這3件唐三彩中優質品的件數記為.如果
,再從這批唐三彩中任取3件作檢驗,若都為優質品,則這批唐三彩通過檢驗;如果
,再從這批唐三彩中任取1件作檢驗,若為優質品,則這批唐三彩通過檢驗;其他情況下,這批唐三彩都不能通過檢驗.假設這批唐三彩的優質品概率為
,即取出的每件唐三彩是優質品的概率都為
,且各件唐三彩是否為優質品相互獨立.
(1)求這批唐三彩通過優質品檢驗的概率;
(2)已知每件唐三彩的檢驗費用為100元,且抽取的每件唐三彩都需要檢驗,對這批唐三彩作質量檢驗所需的總費用記為元,求
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,過右焦點F與長軸垂直的直線與橢圓在第一象限相交于點M,
.
(1)求橢圓C的標準方程;
(2)斜率為1的直線l與橢圓相交于B,D兩點,若以線段BD為直徑的圓恰好過坐標原點,求直線l的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com