【題目】某學校在學校內招募了名男志愿者和
名女志愿者,將這
名志愿者的身高編成如莖葉圖所示(單位:
),若身高在
以上(包括
)定義為“高個子”,身高在
以下(不包括
)定義為“非高個子”。
(Ⅰ)根據數據分別寫出男、女兩組身高的中位數;
(Ⅱ)如果用分層抽樣的方法從“高個子”和“非高個子”中抽取5人,則各抽幾人?
(Ⅲ)在(Ⅱ)的基礎上,從這人中選
人,那么至少有一人是“高個子”的概率是多少?
【答案】(Ⅰ)男生中位數為177cm,女生的中位數為166.5cm;(Ⅱ)答案見解析;(Ⅲ).
【解析】
(I)由莖葉圖中的數據結合中位數的定義計算中位數即可;
(Ⅱ)根據莖葉圖,有“高個子”12人,“非高個子”18人,結合分層抽樣的方法可得要抽取的人數的個數;
(Ⅲ)利用列舉法可得所有的選取方式有10種情形,滿足至少有1人是高個子的有7種情形,結合古典概型計算公式確定概率值即可.
(I)由莖葉圖可知:男生中位數為:177cm,
女生的中位數為:166.5cm;
(Ⅱ)根據莖葉圖,有“高個子”12人,“非高個子”18人,
所以利用分層抽樣的方法所抽取的“高個子”的人數為人,
抽取的“非高個子”的人數為人;
(Ⅲ)設“至少有一人是“高個子””為事件A,
設高個子中選出的2人記為a,b,非高個子選出的3人記為1,2,3,
則所有的選取方式有:
(a,b),(a,1),(a,2),(a,3),(b,1),
(b,2),(b,3),(1,2)(1,3),(2,3)共10種情形,
其中滿足至少有1人是高個子的有:
(a,b),(a,1),(a,2),(a,3),(b,1),(b,2),(b,3),共7種情形,
故所求的概率為:.
即至少有一人是“高個子”的概率為.
科目:高中數學 來源: 題型:
【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區各投入4萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員失誤,橫軸的數據丟失,但可以確定橫軸是從0開始計數的.
(1)根據頻率分布直方圖計算圖中各小長方形的寬度;
(2)估計該公司投入4萬元廣告費用之后,對應銷售收益的平均值(以各組的區間中點值代表該組的取值);
(3)該公司按照類似的研究方法,測得另外一些數據,并整理得到下表:
廣告投入x(單位:萬元) | 1 | 2 | 3 | 4 | 5 |
銷售收益y(單位:萬元) | 1 | 3 | 4 | 7 |
表中的數據顯示,x與y之間存在線性相關關系,請將(2)的結果填入上表的空白欄,并計算y關于x的回歸方程.
回歸直線的斜率和截距的最小二乘法估計公式分別為,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知直線
的方程為
,曲線
是以坐標原點
為頂點,直線
為準線的拋物線.以坐標原點
為極點,
軸非負半軸為極軸建立極坐標系.
(1)分別求出直線與曲線
的極坐標方程:
(2)點是曲線
上位于第一象限內的一個動點,點
是直線
上位于第二象限內的一個動點,且
,請求出
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在ABC中,角A,B,C所對的邊分別為a,b,c,且asinAcosC+csinAcosA=
c.
(1)若c=1,sinC=,求
ABC的面積S;
(2)若D是AC的中點,且cosB=,BD=
,求
ABC的三邊長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某射手射擊1次,擊中目標的概率是0.9,他連續射擊4次,且各次射擊是否擊中目標相互之間沒有影響,有下列結論:
①他第3次擊中目標的概率是0.9;
②他恰好擊中目標3次的概率是;
③他至少擊中目標1次的概率是;
④他至多擊中目標1次的概率是
其中正確結論的序號是( )
A.①②③B.①③
C.①④D.①②
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線y2=2px(p>0)的焦點為F,拋物線上的兩個動點A,B始終滿足∠AFB=60°,過弦AB的中點H作拋物線的準線的垂線HN,垂足為N,則的取值范圍為
A.(0,]B.[
,+∞)
C.[1,+∞)D.(0,1]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】經過多年的努力,炎陵黃桃在國內乃至國際上逐漸打開了銷路,成為炎陵部分農民脫貧致富的好產品.為了更好地銷售,現從某村的黃桃樹上隨機摘下了100個黃桃進行測重,其質量分布在區間內(單位:克),統計質量的數據作出其頻率分布直方圖如圖所示:
(1)按分層抽樣的方法從質量落在,
的黃桃中隨機抽取5個,再從這5個黃桃中隨機抽2個,求這2個黃桃質量至少有一個不小于400克的概率;
(2)以各組數據的中間數值代表這組數據的平均水平,以頻率代表概率,已知該村的黃桃樹上大約還有100000個黃桃待出售,某電商提出兩種收購方案:
A.所有黃桃均以20元/千克收購;
B.低于350克的黃桃以5元/個收購,高于或等于350克的以9元/個收購.
請你通過計算為該村選擇收益最好的方案.
(參考數據:)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com