【題目】在ABC中,角A,B,C所對的邊分別為a,b,c,且asinAcosC+csinAcosA=
c.
(1)若c=1,sinC=,求
ABC的面積S;
(2)若D是AC的中點,且cosB=,BD=
,求
ABC的三邊長.
科目:高中數學 來源: 題型:
【題目】黃金分割比例具有嚴格的比例性,藝術性,和諧性,蘊含著豐富的美學價值.這一比值能夠引起人們的美感,被稱為是建筑和藝術中最理想的比例.我們把離心率
的橢圓稱為“黃金橢圓”,則以下四種說法中正確的個數為( )
①橢圓是“黃金橢圓;
②若橢圓,
的右焦點
且滿足
,則該橢圓為“黃金橢圓”;
③設橢圓,
的左焦點為F,上頂點為B,右頂點為A,若
,則該橢圓為“黃金橢圓”;
④設橢圓,,
的左右頂點分別A,B,左右焦點分別是
,
,若
,
,
成等比數列,則該橢圓為“黃金橢圓”;
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代數學專著《九章算術》中有一個“兩鼠穿墻題”,其內容為:“今有垣厚五尺,兩鼠對穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半.問何日相逢?各穿幾何?”如圖的程序框圖源于這個題目,執行該程序框圖,若輸入x=20,則輸出的結果為( )
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左焦點
,直線
與y軸交于點P.且與橢圓交于A,B兩點.A為橢圓的右頂點,B在x軸上的射影恰為
。
(1)求橢圓E的方程;
(2)M為橢圓E在第一象限部分上一點,直線MP與橢圓交于另一點N,若,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面
是梯形,
,
,
是正三角形,
為
的中點,平面
平面
.
(1)求證:平面
;
(2)在棱上是否存在點
,使得二面角
的余弦值為
?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校在學校內招募了名男志愿者和
名女志愿者,將這
名志愿者的身高編成如莖葉圖所示(單位:
),若身高在
以上(包括
)定義為“高個子”,身高在
以下(不包括
)定義為“非高個子”。
(Ⅰ)根據數據分別寫出男、女兩組身高的中位數;
(Ⅱ)如果用分層抽樣的方法從“高個子”和“非高個子”中抽取5人,則各抽幾人?
(Ⅲ)在(Ⅱ)的基礎上,從這人中選
人,那么至少有一人是“高個子”的概率是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將邊長為的正方形
沿對角線
折起,使得平面
平面
,在折起后形成的三棱錐
中,給出下列四個命題:①
;②異面直線
與
所成的角為
;③二面角
余弦值為
;④三棱錐
的體積是
.其中正確命題的序號是___________.(寫出所有正確命題的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,圓
的參數方程為
(
為參數),以直角坐標系的原點
為極點,
軸正半軸為極軸建立極坐標系.
(1)求圓的極坐標方程;
(2)設曲線的極坐標方程為
,曲線
的極坐標方程為
,求三條曲線
,
,
所圍成圖形的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com