精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)= ax2+lnx,a∈R. (Ⅰ)若曲線y=f(x)與直線y=3x+b在x=1處相切,求實數a,b的值;
(Ⅱ)求函數y=f(x)的單調區間;
(Ⅲ)若a=0時,函數h(x)=f(x)+bx有兩個不同的零點,求實數b的取值范圍.

【答案】解:(Ⅰ)∵函數f(x)= ax2+lnx,x>0, ∴f′(x)=ax+ ,
∵曲線y=f(x)與直線y=3x+b在x=1處相切,
∴f′(1)=a+1=3,
∴a=2,
∴f(1)=1+ln1=1,
∴1=3+b,
∴b=﹣2,
(Ⅱ)由(1)可得f′(x)=ax+
當a≥0時,f′(x)=ax+ >0恒成立,
∴f(x)在(0,+∞)上單調遞增,
當a<0時,令f′(x)=0,解得x= = ,
當x∈(0, )時,f′(x)>0,函數單調遞增,
當x∈( ,+∞)時,f′(x)<0,函數單調遞減,
(Ⅲ)a=0時,函數h(x)=f(x)+bx=lnx+bx
令m(x)=lnx,n(x)=﹣bx,
要使得h(x)有兩個零點,即使得m(x)和n(x)圖象有兩個交點(如圖),
容易求得m(x)和n(x)的切點為(e,1),
∴0<﹣b< ,即﹣ <b<0.

【解析】(Ⅰ)根據導數的幾何意義即可求出k,b的值,(Ⅱ)先求導,再分類討論,根據導數和函數的單調性關系即可求出.(Ⅲ)當a=0時,若函數h(x)有兩個不同的零點,利用數形結合即可求b的取值范圍;
【考點精析】解答此題的關鍵在于理解利用導數研究函數的單調性的相關知識,掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果,那么函數在這個區間單調遞增;(2)如果,那么函數在這個區間單調遞減.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設函數f(x)=|2x+a|+|x﹣ |(x∈R,實數a<0).
(Ⅰ)若f(0)> ,求實數a的取值范圍;
(Ⅱ)求證:f(x)≥

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)=Acos(ωx+φ)(A>0,ω>0,﹣π<φ<0)的部分圖象如圖所示,為了得到g(x)=Asinωx的圖象,只需將函數y=f(x)的圖象(
A.向左平移 個單位長度
B.向左平移 個單位長度
C.向右平移 個單位長度
D.向右平移 個單位長度

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某科技博覽會展出的智能機器人有 A,B,C,D 四種型號,每種型號至少有 4 臺.要求每 位購買者只能購買1臺某種型號的機器人,且購買其中任意一種型號的機器人是等可能的.現在有 4 個人要購買機器人.
(Ⅰ)在會場展覽臺上,展出方已放好了 A,B,C,D 四種型號的機器人各一臺,現把他們 排成一排表演節目,求 A 型與 B 型相鄰且 C 型與 D 型不相鄰的概率;
(Ⅱ)設這 4 個人購買的機器人的型號種數為ξ,求ξ 的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)= ,F(x)=2f(x)﹣x有2個零點,則實數a的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)為偶函數,當x<0時,f(x)=ln(﹣x)+3x,則曲線y=f(x)在點(1,﹣3)處的切線方程是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】三棱柱ABC﹣A1B1C1中,△ABC為等邊三角形,AA1⊥平面ABC,AA1=AB,M,N分別是A1B1 , A1C1的中點,則BM與AN所成角的余弦值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】近年來,手機已經成為人們日常生活中不可缺少的產品,手機的功能也日趨完善,已延伸到了各個領域,如拍照,聊天,閱讀,繳費,購物,理財,娛樂,辦公等等,手機的價格差距也很大,為分析人們購買手機的消費情況,現對某小區隨機抽取了200人進行手機價格的調查,統計如下:

年齡 價格

5000元及以上

3000元﹣4999元

1000元﹣2999元

1000元以下

45歲及以下

12

28

66

4

45歲以上

3

17

46

24

(Ⅰ)完成關于人們使用手機的價格和年齡的2×2列聯表,再判斷能否在犯錯誤的概率不超過0.025的前提下,認為人們使用手機的價格和年齡有關?
(Ⅱ)從樣本中手機價格在5000元及以上的人群中選擇3人調查其收入狀況,設3人中年齡在45歲及以下的人數為隨機變量X,求隨機變量X的分布列及數學期望.
附K2=

P(K2≥k)

0.05

0.025

0.010

0.001

k

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】△ABC的內角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c. (Ⅰ)求C;
(Ⅱ)若c= ,△ABC的面積為 ,求△ABC的周長.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视