【題目】已知點,動點
,
分別在
軸,
軸上運動,
,
為平面上一點,
,過點
作
平行于
軸交
的延長線于點
.
(Ⅰ)求點的軌跡曲線
的方程;
(Ⅱ)過點作
軸的垂線
,平行于
軸的兩條直線
,
分別交曲線
于
,
兩點(直線
不過
),交
于
,
兩點.若線段
中點的軌跡方程為
,求
與
的面積之比.
科目:高中數學 來源: 題型:
【題目】甘肅省瓜州縣自古就以盛產“美瓜”而名揚中外,生產的“瓜州蜜瓜”有4個系列30多個品種,質脆汁多,香甜可口,清爽宜人,含糖量達14%-19%,是消暑止渴的佳品,有詩贊曰:冰泉浸綠玉,霸刀破黃金;涼冷消晚署,清甘洗渴心,調查表明,蜜瓜的甜度與海拔高度、日照時長、溫差有極強的相關性,分別用表示蜜瓜甜度與海拔高度、日照時長、溫差的相關程度,并對它們進行量化:0表示一般,1表示良,2表示優,再用綜合指標
的值評定蜜瓜的等級,若
,則為一級;若
,則為二級;若
,則為三級.近年來,周邊各省也開始發展蜜瓜種植,為了了解目前蜜瓜在周邊各省的種植情況,研究人員從不同省份隨機抽取了10塊蜜瓜種植地,得到如下結果:
(1)若有蜜瓜種植地110塊,試估計等級為一級的蜜瓜種植地的數量;
(2)在所取樣本的二級和三級蜜瓜種植地中任取2塊, 表示取到三級蜜瓜種植地的數量,求隨機變量
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某微信群中有甲、乙、丙、丁、戊五個人玩搶紅包游戲,現有4個紅包,每人最多搶一個,且紅包被全部搶完,4個紅包中有2個6元,1個8元,1個10元(紅包中金額相同視為相同紅包),則甲、乙都搶到紅包的情況有( )
A. 18種 B. 24種 C. 36種 D. 48種
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某校隨機抽取100名學生,獲得了他們一周課外閱讀時間(單位:小時)的數據,整理得到數據分組及頻數分布表和頻率分布直方圖:
(Ⅰ)從該校隨機選取一名學生,試估計這名學生該周課外閱讀時間少于12小時的概率;
(Ⅱ)求頻率分布直方圖中的的值;
(Ⅲ)從閱讀時間在的學生中任選2人,求恰好有1人閱讀時間在
,另1 人閱讀時間在
的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= sin(2x+
),給出下列四個命題:
①函數f(x)在區間[ ,
]上是減函數;
②直線x= 是f(x)的圖象的一條對稱軸;
③函數f(x)的圖象可以由函數y= sin2x的圖象向左平移
而得到;
④函數f(x)的圖象的一個對稱中心是( ,0).
其中正確的個數是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)在x= 取得最大值2,方程f(x)=0的兩個根為x1、x2 , 且|x1﹣x2|的最小值為π.
(1)求f(x);
(2)將函數y=f(x)圖象上各點的橫坐標壓縮到原來的 ,縱坐標不變,得到函數y=g(x)的圖象,求函數g(x)的單調增區間和在(﹣
,
)上的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= sin2x﹣
cos2x
(1)求f(x)的最小正周期和單調增區間;
(2)若將f(x)的圖象上每一點的橫坐標伸長到原來的兩倍,縱坐標不變,得到函數g(x)的圖象,當x∈[ ]時,求函數g(x)的值域.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com