精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)在x= 取得最大值2,方程f(x)=0的兩個根為x1、x2 , 且|x1﹣x2|的最小值為π.
(1)求f(x);
(2)將函數y=f(x)圖象上各點的橫坐標壓縮到原來的 ,縱坐標不變,得到函數y=g(x)的圖象,求函數g(x)的單調增區間和在(﹣ , )上的值域.

【答案】
(1)解:∵函數f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)在x= 取得最大值2,∴A=2,

方程f(x)=0的兩個根為x1、x2,且|x1﹣x2|的最小值為 = =π,∴ω=1,

再根據五點法作圖可得1 +φ= ,∴φ= ,∴


(2)解:將函數y=f(x)圖象上各點的橫坐標壓縮到原來的 ,縱坐標不變,得到函數y=g(x)=2sin(2x+ )的圖象,

令2kπ﹣ ≤2x+ ≤2kπ+ ,求得kπ﹣ ≤x≤kπ+ ,可得函數g(x)的增區間為[kπ﹣ ,kπ+ ],k∈Z.

在(﹣ , )上,∵2x+ ∈(﹣ , ),∴g(x)=2sin(2x+ )∈(﹣1,2]


【解析】(1)由最值求出A,由周期求出ω,由五點法作圖求出φ的值,可得函數的解析式.(2)根據函數y=Asin(ωx+φ)的圖象變換規律,求得g(x)的解析式,再利用正弦函數的單調性、定義域和值域,求得結論.
【考點精析】根據題目的已知條件,利用函數y=Asin(ωx+φ)的圖象變換的相關知識可以得到問題的答案,需要掌握圖象上所有點向左(右)平移個單位長度,得到函數的圖象;再將函數倍(縱坐標不變),得到函數的圖象;再將函數的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數的圖象.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=2,點E、F分別在邊AB、DC上,M為AD的中點,且 =0,則△MEF的面積的取值范圍為(

A.
B.[1,2]
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 的焦點、軸上,且橢圓經過,過點的直線交于點,與拋物線 交于、兩點,當直線的周長為

(Ⅰ)求的值和的方程;

(Ⅱ)以線段為直徑的圓是否經過上一定點,若經過一定點求出定點坐標,否則說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點,動點, 分別在軸, 軸上運動, 為平面上一點, ,過點平行于軸交的延長線于點.

(Ⅰ)求點的軌跡曲線的方程;

(Ⅱ)過點作軸的垂線,平行于軸的兩條直線, 分別交曲線, 兩點(直線不過),交, 兩點.若線段中點的軌跡方程為,求的面積之比.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下表是某校高三一次月考5個班級的數學、物理的平均成績:

班級

1

2

3

4

5

數學(分)

111

113

119

125

127

物理(分)

92

93

96

99

100

(Ⅰ)一般來說,學生的物理成績與數學成績具有線性相關關系,根據上表提供的數據,求兩個變量, 的線性回歸方程;

(Ⅱ)從以上5個班級中任選兩個參加某項活動,設選出的兩個班級中數學平均分在115分以上的個數為,求的分布列和數學期望.

附: ,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)=sin2(π+x)﹣cos(2π﹣x)+a
(1)求f(x)的值域
(2)若f(x)在(0, )內有零點,求a的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(n)=n2sin ),且an=f(n)+f(n+1),則a1+a2+a3+…+a2016的值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列的各項均為非負數,其前項和為,且對任意的,都有.

(1)若, ,求的最大值;

(2)若對任意,都有,求證: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在某校組織的“共筑中國夢”競賽活動中,甲、乙兩班各有6名選手參賽,在第一輪筆試環節中,評委將他們的筆試成績作為樣本數據,繪制成如圖所示的莖葉圖,為了增加結果的神秘感,主持人故意沒有給出甲、乙兩班最后一位選手的成績,只是告訴大家,如果某位選手的成績高于90分(不含90分),則直接“晉級”.

(1)求乙班總分超過甲班的概率;

(2)主持人最后宣布:甲班第六位選手的得分是90分,乙班第六位選手的得分是97分.若主持人從甲乙兩班所有選手成績中分別隨機抽取2個,記抽取到“晉級”選手的總人數為,求的分布列及數學期望.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视