【題目】已知f(x)=sin2(π+x)﹣cos(2π﹣x)+a
(1)求f(x)的值域
(2)若f(x)在(0, )內有零點,求a的范圍.
【答案】
(1)解:f(x)=sin2(π+x)﹣cos(2π﹣x)+a
=sin2x﹣cosx+a=﹣cos2x﹣cosx+a+1= ,x∈R,cosx∈[﹣1,1],
所以cosx= 時,f(x)最大值為
,cosx=1時,f(x)最小值為﹣1+a;
所以f(x)的值域[﹣1+a,a+ ]
(2)解:若f(x)在(0, )內有零點,
=0在(0,
)有解,
又(cosx+ )2∈(
),
所以 <a+
<
,解得﹣1<a<1
【解析】(1)化簡三角函數式并進行配方,結合正弦函數的有界性求值域;(2)結合(1)的解析式以及角度范圍求出方程 =0在(0,
)有解的關于a 的不等式,解之即可.
科目:高中數學 來源: 題型:
【題目】“大眾創業,萬眾創新”是李克強總理在本屆政府工作報告中向全國人民發出的口號.某生產企業積極響應號召,大力研發新產品.為了對新研發的一批產品進行合理定價,將該產品按事先擬定的價格進行試銷,得到一組銷售數據,如下表所示:
已知.
(1)求出的值;
(2)已知變量,
具有線性相關關系,求產品銷量
(件)關于試銷單價
(元)的線性回歸方程
;
(3)用表示用正確的線性回歸方程得到的與
對應的產品銷量的估計值.當銷售數據
的殘差的絕對值
時,則將銷售數據
稱為一個“好數據”.現從6個銷售數據中任取2個,求抽取的2個銷售數據中至少有1個是“好數據”的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某微信群中有甲、乙、丙、丁、戊五個人玩搶紅包游戲,現有4個紅包,每人最多搶一個,且紅包被全部搶完,4個紅包中有2個6元,1個8元,1個10元(紅包中金額相同視為相同紅包),則甲、乙都搶到紅包的情況有( )
A. 18種 B. 24種 C. 36種 D. 48種
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= sin(2x+
),給出下列四個命題:
①函數f(x)在區間[ ,
]上是減函數;
②直線x= 是f(x)的圖象的一條對稱軸;
③函數f(x)的圖象可以由函數y= sin2x的圖象向左平移
而得到;
④函數f(x)的圖象的一個對稱中心是( ,0).
其中正確的個數是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)在x= 取得最大值2,方程f(x)=0的兩個根為x1、x2 , 且|x1﹣x2|的最小值為π.
(1)求f(x);
(2)將函數y=f(x)圖象上各點的橫坐標壓縮到原來的 ,縱坐標不變,得到函數y=g(x)的圖象,求函數g(x)的單調增區間和在(﹣
,
)上的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= sin2x﹣
cos2x
(1)求f(x)的最小正周期和單調增區間;
(2)若將f(x)的圖象上每一點的橫坐標伸長到原來的兩倍,縱坐標不變,得到函數g(x)的圖象,當x∈[ ]時,求函數g(x)的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}的公差d>0.設{an}的前n項和為Sn,a1=1,S2·S3=36.
(1)求d及Sn;
(2)求m,k(m,k∈N*)的值,使得am+am+1+am+2+…+am+k=65.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給定兩個命題,P:對任意實數x都有ax2+ax+1>0恒成立;Q:關于x的方程x2﹣x+a=0有實數根;如果P與Q中有且僅有一個為真命題,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com