精英家教網 > 高中數學 > 題目詳情

【題目】為了調查民眾對國家實行新農村建設政策的態度,現通過網絡問卷隨機調查了年齡在20周歲至80周歲的100人,他們年齡頻數分布和支持新農村建設人數如下表:

(1)根據上述統計數據填下面的2×2列聯表,并判斷是否有95%的把握認為以50歲為分界點對新農村建設政策的支持度有差異;

(2)為了進一步推動新農村建設政策的實施,中央電視臺某節目對此進行了專題報道,并在節目最后利用隨機撥號的形式在全國范圍內選出4名幸運觀眾(假設年齡均在20周歲至80周歲內),給予適當的獎勵.若以頻率估計概率,記選出4名幸運觀眾中支持新農村建設人數為,試求隨機變量的分布列和數學期望.

參考數據:

參考公式:

【答案】12×2列聯表見解析,無95%的把握(2)期望為,分布列見解析

【解析】

1)根據題目所給數據填寫好聯表,計算的值,由此判斷沒有把握認為以50歲為分界點對新農村建設政策的支持度有差異.(2)利用二項分布計算公式,計算出分布列和數學期望.

1)列聯表如下圖所示:

,故沒有把握認為以50歲為分界點對新農村建設政策的支持度有差異.(2)依題意,的所有可能取值為,且觀眾支持“新農村建設”的概率為,且,所以,,,,,所以的分布列為

所以的數學期望為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,過右焦點F與長軸垂直的直線與橢圓在第一象限相交于點M,

1)求橢圓C的標準方程;

2)斜率為1的直線l與橢圓相交于BD兩點,若以線段BD為直徑的圓恰好過坐標原點,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱錐P-ABCD,底面ABCD是邊長為的正方形,平面PAC底面ABCD,PA=PC=

1)求證:PB=PD;

2)若點M,N分別是棱PA,PC的中點,平面DMN與棱PB的交點Q,則在線段BC上是否存在一點H,使得DQPH,若存在,BH的長,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在直角坐標系中,曲線的參數方程為為參數),以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求曲線的普通方程與曲線的直角坐標方程;

(2)若交于兩點,點的極坐標為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的短軸長為,且離心率為,圓

(1)求橢圓C的方程,

(2)P在圓D上,F為橢圓右焦點,線段PF與橢圓C相交于Q,若,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】蘋果是人們日常生活中常見的營養型水果.某地水果批發市場銷售來自5個不同產地的富士蘋果,各產地的包裝規格相同,它們的批發價格(元/箱)和市場份額如下:

產地

批發價格

市場份額

市場份額亦稱“市場占有率”.指某一產品的銷售量在市場同類產品中所占比重.

(1)從該地批發市場銷售的富士蘋果中隨機抽取一箱,求該箱蘋果價格低于元的概率;

(2)按市場份額進行分層抽樣,隨機抽取箱富士蘋果進行檢驗,

①從產地共抽取箱,求的值;

②從這箱蘋果中隨機抽取兩箱進行等級檢驗,求兩箱產地不同的概率;

(3)由于受種植規模和蘋果品質的影響,預計明年產地的市場份額將增加,產地的市場份額將減少,其它產地的市場份額不變,蘋果銷售價格也不變(不考慮其它因素).設今年蘋果的平均批發價為每箱元,明年蘋果的平均批發價為每箱元,比較的大小.(只需寫出結論)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知過點的動直線與圓相交于、兩點.

1)當時,求直線的方程;

2)設動點滿足,求點的軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】實數ab滿足ab>0ab,由a、b、、按一定順序構成的數列( 。

A. 可能是等差數列,也可能是等比數列

B. 可能是等差數列,但不可能是等比數列

C. 不可能是等差數列,但可能是等比數列

D. 不可能是等差數列,也不可能是等比數列

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖是某超市一年中各月份的收入與支出單位:萬元情況的條形統計圖已知利潤為收入與支出的差,即利潤收入一支出,則下列說法正確的是  

A. 利潤最高的月份是2月份,且2月份的利潤為40萬元

B. 利潤最低的月份是5月份,且5月份的利潤為10萬元

C. 收入最少的月份的利潤也最少

D. 收入最少的月份的支出也最少

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视