精英家教網 > 高中數學 > 題目詳情
(本小題滿分12分)
設函數
(Ⅰ)求函數的單調區間;
(Ⅱ)已知對任意成立,求實數的取值范圍。

(Ⅰ)






+
0
-
-

單調增
極大值
單調減
單調減
 
(Ⅱ)
 則 列表如下






+
0
-
-

單調增
極大值
單調減
單調減
     (2)  在  兩邊取對數, 得,由于所以
         (1)
由(1)的結果可知,當時, ,
為使(1)式對所有成立,當且僅當,即
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如右圖(1)所示,定義在區間上的函數,如果滿     
足:對,常數A,都有成立,則稱函數  
在區間上有下界,其中稱為函數的下界. (提示:圖(1)、(2)中的常數可以是正數,也可以是負數或零)
(Ⅰ)試判斷函數上是否有下界?并說明理由;
(Ⅱ)又如具有右圖(2)特征的函數稱為在區間上有上界.
請你類比函數有下界的定義,給出函數在區間
有上界的定義,并判斷(Ⅰ)中的函數在上是否
有上界?并說明理由;                   
(Ⅲ)若函數在區間上既有上界又有下界,則稱函數
在區間上有界,函數叫做有界函數.試探究函數 (是常數)是否是、是常數)上的有界函數?

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

20090520

 
已知函數為自然對數的底數)

(Ⅰ)求的最小值
(Ⅱ)設不等式的解集為P,且,求實數a的取值范圍

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

理在直角坐標平面內,已知三點A、B、C共線,函數滿足:(1)求函數的表達式;(2)若,求證:;(3)若不等式對任意及任意都成立,求實數的取值范圍。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分13分)
已知函數的圖像與函數的圖象相切,記
(Ⅰ)求實數b的值及函數F(x)的極值;
(Ⅱ)若關于x的方程F(x)=k恰有三個不等的實數根,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題16分) 設函數,且,其中是自然對數的底數.(1)求的關系;(2)若在其定義域內為單調函數,求的取值范圍;
(3)設,若在上至少存在一點,使得成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)  
已知,.
(1)當時,求的單調區間;
(2)求在點處的切線與直線及曲線所圍成的封閉圖形的面積;
(3)是否存在實數,使的極大值為3?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設f(x)=ln(2x-1),若f(x)在x0處的導數f′(x0)=1,則x0的值為( 。
A.
e+1
2
B.
3
2
C.1D.
3
4

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知函數y=f(x)是定義在實數集R上的奇函數,f′(x)是f(x)的導函數,且當x>0,f(x)+xf′(x)>0,設a=(log
1
2
4)f(log
1
2
4),b=
2
f(
2
),c=(lg
1
5
)f(lg
1
5
),則a,b,c的大小關系是( 。
A.c>a>bB.c>b>aC.a>b>cD.a>c>b

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视