【題目】(題文)已知正方體的棱長為1,每條棱所在直線與平面α所成的角都相等,則α截此正方體所得截面面積的最大值為
A. B.
C.
D.
科目:高中數學 來源: 題型:
【題目】平面內有12個點,其中任意三點不共線,每兩點連一條線段(或邊)。這些線段用紅、藍兩色染色,每條線段恰染一色,其中,從某點出發的紅色線段有奇數條,而從其余11個點出發的紅色線段數互不相同。求以已知點為頂點、各邊均為紅色的三角形個數及兩邊為紅色、另一邊為藍色的三角形個數。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業有,
兩個分廠生產某種產品,規定該產品的某項質量指標值不低于130的為優質品.分別從
,
兩廠中各隨機抽取100件產品統計其質量指標值,得到如圖頻率分布直方圖:
(1)根據頻率分布直方圖,分別求出分廠的質量指標值的眾數和中位數的估計值;
(2)填寫列聯表,并根據列聯表判斷是否有
的把握認為這兩個分廠的產品質量有差異?
優質品 | 非優質品 | 合計 | |
合計 |
(3)(i)從分廠所抽取的100件產品中,利用分層抽樣的方法抽取10件產品,再從這10件產品中隨機抽取2件,已知抽到一件產品是優質品的條件下,求抽取的兩件產品都是優質品的概率;
(ii)將頻率視為概率,從分廠中隨機抽取10件該產品,記抽到優質品的件數為
,求
的數學期望.
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線
:
(
為參數),在以原點
為極點,
軸的正半軸為極軸建立的極坐標系中,直線
的極坐標方程為
.
(1)求曲線的普通方程和直線
的直角坐標方程;
(2)過點且與直線
平行的直線
交
于
,
兩點,求點
到
,
兩點的距離之積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的離心率為
,點
在橢圓
上.
(1)求橢圓的方程;
(2)若不過原點的直線
與橢圓
相交于
,
兩點,與直線
相交于點
,且
是線段
的中點,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4—4:坐標系與參數方程]
在直角坐標系中,曲線
的方程為
.以坐標原點為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求的直角坐標方程;
(2)若與
有且僅有三個公共點,求
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近日,據媒體報道稱,“雜交水稻之父”袁隆平及其團隊培育的超級雜交稻品種“湘兩優900(超優千號)”再創畝產世界紀錄,經第三方專家測產,該品種的水稻在實驗田內畝產1203.36公斤.中國工程院院士袁隆平在1973年率領科研團隊開啟了的雜交水稻王國的大門,在數年的時間內就解決了十多億人的吃飯問題,有力回答了世界“誰來養活中國”的疑問.2012年,在袁隆平的實驗田內種植了,
兩個品種的水稻,為了篩選出更優的品種,在
,
兩個品種的實驗田中分別抽取7塊實驗田,如圖所示的莖葉圖記錄了這14塊實驗田的畝產量(單位:
),通過莖葉圖比較兩個品種的均值及方差,并從中挑選一個品種進行以后的推廣,有如下結論:①.
品種水稻的平均產量高于
品種水稻,推廣
品種水稻;②.
品種水稻的平均產量高于
品種水稻,推廣
品種水稻;③.
品種水稻的比
品種水稻產量更穩定,推廣
品種水稻;④.
品種水稻的比
品種水稻產量更穩定,推廣
品種水稻;
其中正確結論的編號為( )
A. ①② B. ①③ C. ②④ D. ①④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四邊形ABCD為正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.
(1)證明:平面PQC⊥平面DCQ;
(2)求直線DQ與面PQC成角的正弦值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】天氣預報,在元旦期間甲、乙兩地都降雨的概率為,至少有一個地方降雨的概率為
,已知甲地降雨的概率大于乙地降雨的概率,且在這段時間甲、乙兩地降雨互不影響.
(1)分別求甲、乙兩地降雨的概率;
(2)在甲、乙兩地3天假期中,僅有一地降雨的天數為,求
的分布列和數學期望與方差.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com