【題目】已知定義域為R的函數f(x)是奇函數,當x≥0時,f(x)=|x﹣a2|﹣a2 , 且對x∈R,恒有f(x﹣2)<f(x),則實數a的取值范圍為( )
A.
B.
C.
D.
科目:高中數學 來源: 題型:
【題目】已知定義在實數集R上的函數f(x)滿足f(1)=2,且f(x)的導數f'(x)在R上恒有f'(x)<1(x∈R),則不等式f(x)>x+1的解集為( )
A.(1,+∞)
B.(﹣∞,﹣1)∪(1,+∞)
C.(﹣1,1)
D.(﹣∞,1)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓=1(a>b>0)的左右焦點分別為F1(-c,0)、F2(c,0),過橢圓中心的弦PQ滿足丨PQ丨=2,∠PF2Q=90°,且△PF2Q的面積為1.
(1)求橢圓的方程;
(2)直線l不經過點A(0,1),且與橢圓交于M,N兩點,若以MN為直徑的圓經過點A,求證:直線l過定點,并求出該定點的坐標。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 ,a為正常數.
(1)若f(x)=lnx+φ(x),且a= ,求函數f(x)的單調增區間;
(2)在(1)中當a=0時,函數y=f(x)的圖象上任意不同的兩點A(x1 , y1),B(x2 , y2),線段AB的中點為C(x0 , y0),記直線AB的斜率為k,試證明:k>f'(x0).
(3)若g(x)=|lnx|+φ(x),且對任意的x1 , x2∈(0,2],x1≠x2 , 都有 ,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,該幾何體是由一個直三棱柱和一個正四棱錐
組合而成,
,
.
(1)證明:平面平面
;
(2)求正四棱錐的高
,使得該四棱錐的體積是三棱錐
體積的4倍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=cos2 +
sinωx﹣
(ω>0),x∈R,若f(x)在區間(π,2π)內沒有零點,則ω的取值范圍是( )
A.(0, ]
B.(0, ]∪[
,
)
C.(0, ]
D.(0, ]∪[
,
]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)(x∈R)滿足f(1)=1,且f(x)的導函數f′(x)≥ ,則f(x)<
+
的解集為( )
A.{x|x<1}
B.{x|x>1}
C.{x|x<﹣1}
D.{x|x>﹣1}
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com