【題目】設直線y=kx+1與圓x2+y2+2x﹣my=0相交于A,B兩點,若點A,B關于直線l:x+y=0對稱,則|AB|= .
科目:高中數學 來源: 題型:
【題目】數列{an}的前n項和為Sn , Sn=(2n﹣1)an , 且a1=1.
(1)求數列{an}的通項公式;
(2)若bn=nan , 求數列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線x2=2py(p>0)的焦點為F,直線x=4與x軸的交點為P,與拋物線的交點為Q,且 .
(1)求拋物線的方程;
(2)如圖所示,過F的直線l與拋物線相交于A,D兩點,與圓x2+(y﹣1)2=1相交于B,C兩點(A,B兩點相鄰),過A,D兩點分別作我校的切線,兩條切線相交于點M,求△ABM與△CDM的面積之積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】執行如圖所示的程序框圖,若輸出的結果是8,則判斷框內m的取值范圍是( )
A.(30,42]
B.(42,56]
C.(56,72]
D.(30,72)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖.設橢圓C: (a>b>0)的離心率e=
,橢圓C上一點M到左、右兩個焦點F1、F2的距離之和是4.
(1)求橢圓C的方程;
(2)直線l:x=1與橢圓C交于P、Q兩點,P點位于第一象限,A、B是橢圓上位于直線l兩側的動點,若直線AB的斜率為 ,求四邊形APBQ面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點P在圓C:x2+y2=4上,而Q為P在x軸上的投影,且點N滿足 ,設動點N的軌跡為曲線E.
(1)求曲線E的方程;
(2)若A,B是曲線E上兩點,且|AB|=2,O為坐標原點,求△AOB的面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數f(x)=x2+ax+ 在(
,+∞)上是增函數,則a的取值范圍是( )
A.[﹣1,0]
B.[﹣1,+∞)
C.[0,3]
D.[3,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某程序框圖如圖所示,現將輸出(x,y)值依次記為:(x1 , y1),(x2 , y2),…,(xn , yn),…,若程序運行中輸出一個數組是(x,﹣10),則數組中的x=( )
A.16
B.32
C.64
D.128
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,不等式 +
≥
成立;在四邊形ABCD中,不等式
+
+
+
≥
成立成立;在五邊形ABCDE中,不等式
+
+
+
+
≥
成立…,依此類推,在n邊形A1A2…An中,不等式不等式
≥成立.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com