【題目】如圖在棱錐中,
為矩形,
面
,
,
與面
成
角,
與面
成
角.
(1)在上是否存在一點
,使
面
,若存在確定
點位置,若不存在,請說明理由;
(2)當為
中點時,求二面角
的余弦值.
【答案】(1)見解析(2)
【解析】試題分析:(1)法一:要證明PC⊥面ADE,只需證明AD⊥PC,通過證明即可,然后推出存在點E為PC中點.
法二:建立如圖所示的空間直角坐標系D﹣XYZ,設,通過
得到
,即存在點E為PC中點.
(2)由(1)知求出面ADE的法向量,面PAE的法向量,利用空間向量的數量積.求解二面角P﹣AE﹣D的余弦值.
試題解析:
(Ⅰ)法一:要證明PC⊥面ADE,易知AD⊥面PDC,即得AD⊥PC,故只需即可,所以由
,即存在點E為PC中點
法二:建立如圖所示的空間直角坐標系D-XYZ,
由題意知PD=CD=1,
,設
,
,
,
由,得
,
即存在點E為PC中點。
(Ⅱ)由(Ⅰ)知,
,
,
,
,
,
設面ADE的法向量為,面PAE的法向量為
由的法向量為得,
得
同理求得 所以
故所求二面角P-AE-D的余弦值為.
科目:高中數學 來源: 題型:
【題目】有甲乙兩家公司都愿意聘用某求職者,這兩家公式的具體聘用信息如下:
(1)根據以上信息,如果你是該求職者,你會選擇哪一家公司?說明理由;
(2)某課外實習作業小組調查了1000名職場人士,就選擇這兩家公司的意愿作了統計,得到如下數據分布:
若分析選擇意愿與年齡這兩個分類變量,計算得到的的觀測值為
,測得出“選擇意愿與年齡有關系”的結論犯錯誤的概率的上限是多少?并用統計學知識分析,選擇意愿與年齡變量和性別變量哪一個關聯性更大?
附:
| ||||
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)的導函數f′(x),且對任意x>0,都有f′(x)>.
(1)判斷函數F(x)=在(0,+∞)上的單調性;
(2)設x1,x2∈(0,+∞),證明:f(x1)+f(x2)<f(x1+x2);
(3)請將(2)中結論推廣到一般形式,并證明你所推廣的結論.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com