【題目】某市有一面積為12000平方米的三角形地塊,其中邊
長為200米,現計劃建一個如圖所示的長方形停車場
,停車場的四個頂點都在
的三條邊上,其余的地面全部綠化.若建停車場的費用為180元/平方米,綠化的費用為60元/平方米,設
米,建設工程的總費用為
元.
(1)求關于
的函數表達式:
(2)求停車場面積最大時的值,并求此時的工程總費用.
科目:高中數學 來源: 題型:
【題目】折紙是一項藝術,可以折出很多數學圖形.將一張圓形紙片放在平面直角坐標系中,圓心B(-1,0),半徑為4,圓內一點A為拋物線的焦點.若每次將紙片折起一角,使折起部分的圓弧的一點
始終與點A重合,將紙展平,得到一條折痕,設折痕與線段
B的交點為P.
(Ⅰ)將紙片展平后,求點P的軌跡C的方程;
(Ⅱ)已知過點A的直線l與軌跡C交于R,S兩點,當l無論如何變動,在AB所在直線上存在一點T,使得所在直線一定經過原點,求點T的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】正四面體是側棱與底面邊長都相等的正三棱錐,它的對棱互相垂直.有一個如圖所示的正四面體,E,F,G分別是棱AB,BC,CD的中點.
(1)求證:面EFG;
(2)求異面直線EG與AC所成角的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某生產企業研發了一種新產品,該新產品在某網店試銷一個階段后得到銷售單價和月銷售量
之間的一組數據,如下表所示:
銷售單價 | 9 | 9.5 | 10 | 10.5 | 11 |
月銷售量 | 11 | 10 | 8 | 6 | 5 |
(Ⅰ)根據統計數據,求出關于
的回歸直線方程,并預測月銷售量不低于12萬件時銷售單價的最大值;
(Ⅱ)生產企業與網店約定:若該新產品的月銷售量不低于10萬件,則生產企業獎勵網店1萬元;若月銷售量不低于8萬件且不足10萬件,則生產企業獎勵網店5000元;若月銷售量低于8萬件,則沒有獎勵.現用樣本估計總體,從上述5個銷售單價中任選2個銷售單價,求抽到的產品含有月銷量量不低于10萬件的概率.
參考公式:對于一組數據,
,…,
,其回歸直線
的斜率和截距的最小二乘估計分別為
,
.
參考數據:,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠生產,
,
三種紀念品,每種紀念品均有普通型和精品型兩種,某一天產量如下表(單位:個):
普通型 | 精品型 | |
紀念品 | 800 | 200 |
紀念品 | 150 | |
紀念品 | 500 | 350 |
現采用分層抽樣的方法在這一天生產的紀念品中抽取100個,其中有種紀念品40個.
(1)若再用分層抽樣的方法在所有種紀念品中抽取一個容量為13的樣本.將該樣本看成一個總體,從中任取2個紀念品,求至少有1個精品型紀念品的概率(用最簡分數表示);
(2)從種精品型紀念品中抽取6個,其某種指標的數據分別如下:4,7,
,
,8,5.把這6個數據看作一個總體,其均值為7、方差為6,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《九章算術》卷五《商功》中有如下敘述“今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高一丈“芻甍”指的是底面為矩形的對稱型屋脊狀的幾何體,“下廣三丈”是指底面矩形寬三丈,“袤四丈”是指底面矩形長四丈,“上袤二丈”是指脊長二丈,“無寬”是指脊無寬度,“高一丈”是指幾何體的高為一丈.現有一個芻甍如圖所示,下廣三丈,袤四丈,上袤三丈,無廣,高二丈,則該芻甍的外接球的表面積為_______________平方丈.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com