精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=BB1=1,B1C=2.

(1)求證:平面B1AC⊥平面ABB1A1;
(2)求直線A1C與平面B1AC所成角的正弦值.

【答案】
(1)證明:由直三棱柱性質,B1B⊥平面ABC;

∴B1B⊥AC;

又AB⊥AC,B1B∩BA=B;

∴AC⊥平面ABB1A1,AC平面B1AC;

∴平面B1AC⊥平面ABB1A1


(2)解:如圖,連接A1B交AB1于M,連接CM;

∵AB=BB1

∴A1B1=AA1;

∴A1M⊥AB1;

∵平面B1AC⊥平面ABB1A,且平面B1AC∩平面ABB1A1=B1A;

∴A1M⊥平面B1AC;

∴∠A1CM為直線A1C與平面B1AC所成的角;

∵AB=BB1=1,B1C=2;

∴BC= ,AC= ;

;

∴直線A1C與平面B1AC所成角的正弦值為


【解析】(1)根據直三棱柱的定義便可得到AC⊥B1B,再根據條件AC⊥AB便可得出AC⊥平面ABB1A1 , 從而由面面垂直的判定定理即可得出平面B1AC⊥平面ABB1A1;(2)可連接A1B,設交AB1于M,可得到A1M⊥AB1 , 從而由面面垂直的性質定理得到A1M⊥平面B1AC,這樣∠A1CM便是直線A1C與平面B1AC所成的角,根據條件便可求出A1M和A1C的長,由 即可得出直線A1C與平面B1AC所成角的正弦值.
【考點精析】通過靈活運用平面與平面垂直的判定和空間角的異面直線所成的角,掌握一個平面過另一個平面的垂線,則這兩個平面垂直;已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在平面直角坐標系中,直線的參數方程為,其中為參數, ,再以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為,其中 ,直線與曲線交于兩點.

(1)求的值;

(2)已知點,且,求直線的普通方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知實數a,b,c,d成等比數列,且曲線y=3x﹣x3的極大值點坐標為(b,c)則ad等于(
A.2
B.1
C.﹣1
D.﹣2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=ex﹣ax﹣2.
(1)求f(x)的單調區間;
(2)若a=1,k為整數,且當x>0時,(x﹣k)f′(x)+x+1>0,求k的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在長方形中,設一條對角線與其一頂點出發的兩條邊所成的角分別是α,β,則有cos2α+cos2β=1類比到空間,在長方體中,一條對角線與從其一頂點出發的三個面所成的角分別為α,β,γ,則有cos2α+cos2β+cos2γ=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某城市隨機抽取一年內100 天的空氣質量指數(AQI)的監測數據,結果統計如表:

API

[0,50]

(50,100]

(100,150]

(150,200]

(200,300]

>300

空氣質量

輕度污染

輕度污染

中度污染

重度污染

天數

6

14

18

27

20

15


(1)若本次抽取的樣本數據有30 天是在供暖季,其中有8 天為嚴重污染.根據提
供的統計數據,完成下面的2×2 列聯表,并判斷是否有95%的把握認為“該城市本年的
空氣嚴重污染與供暖有關”?

非重度污染

嚴重污染

合計

供暖季

非供暖季

合計

100


(2)已知某企業每天的經濟損失y(單位:元)與空氣質量指數x 的關系式為y= 試估計該企業一個月(按30 天計算)的經濟損失的數學期望.
參考公式:K2=

P(K2≥k)

0.100

0.050

0.025

0.010

0.001

k

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數 .若曲線在點處的切線方程為為自然對數的底數).

1)求函數的單調區間;

2)若關于的不等式在(0,+)上恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數 .若曲線在點處的切線方程為為自然對數的底數).

1)求函數的單調區間;

2)若關于的不等式在(0,+)上恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數,曲線在點處的切線與直線垂直(其中為自然對數的底數)。

(Ⅰ)若在區間上存在極值,求實數的取值范圍;

(Ⅱ)求證:當時,不等式

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视