【題目】設f(x)=|x+1|+|x﹣1|.
(1)求f(x)≤x+2的解集;
(2)若不等式f(x)≤log2(a2﹣4a+12)對任意實數a恒成立,求x的取值范圍.
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,已知中心在原點,離心率為
的橢圓
的一個焦點為圓
:
的圓心.
(Ⅰ)求橢圓的方程;
(Ⅱ)設是橢圓
上一點,過
作兩條斜率之積為
的直線
,
,當直線
,
都與圓
相切時,求
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國的煙花名目繁多,花色品種繁雜.其中“菊花”煙花是最壯觀的煙花之一,制造時一般是期望在它達到最高點時爆裂,通過研究,發現該型煙花爆裂時距地面的高度h(單位:米)與時間t(單位:秒)存在函數關系,并得到相關數據如下表:
時間t | 2 | 4 | |
高度h | 10 | 25 | 17 |
( I)根據上表數據,從下列函數中,選取一個函數描述該型煙花爆裂時距地面的高度h與時間t的變化關系:y1=kt+b,y2=at2+bt+c,y3=abt , 確定此函數解析式,并簡單說明理由;
( II)利用你選取的函數,判斷煙花爆裂的最佳時刻,并求出此時煙花距地面的高度.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲乙兩家快遞公司其“快遞小哥”的日工資方案如下:甲公司規定底薪元,每單抽成
元;乙公司規定底薪
元,每日前
單無抽成,超過
單的部分每單抽成
元
(1)設甲乙快遞公司的“快遞小哥”一日工資(單位:元)與送貨單數
的函數關系式為
,求
;
(2)假設同一公司的“快遞小哥”一日送貨單數相同,現從兩家公司各隨機抽取一名“快遞小哥”,并記錄其天的送貨單數,得到如下條形圖:
若將頻率視為概率,回答下列問題:
①記乙快遞公司的“快遞小哥”日工資為(單位:元),求
的分布列和數學期望;
②小趙擬到兩家公司中的一家應聘“快遞小哥”的工作,如果僅從日收入的角度考慮,請你利用所學的統計學知識為他作出選擇,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知曲線的極坐標方程為
,以極點為平面直角坐標系的原點,極軸為
的正半軸,建立平面直角坐標系
.
(1)若曲線為參數)與曲線
相交于兩點
,求
;
(2)若是曲線
上的動點,且點
的直角坐標為
,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】五一節期間,某商場為吸引顧客消費推出一項優惠活動,活動規則如下:消費額每滿100元可轉動如圖所示的轉盤一次,并獲得相應金額的返券.(假定指針等可能地停在任一位置,指針落在區域的邊界時,重新轉一次)指針所在的區域及對應的返劵金額見表.
例如:消費218元,可轉動轉盤2次,所獲得的返券金額是兩次金額之和.
(1)已知顧客甲消費后獲得n次轉動轉盤的機會,已知他每轉一次轉盤指針落在區域邊界的概率為p,每次轉動轉盤的結果相互獨立,設ξ為顧客甲轉動轉盤指針落在區域邊界的次數,ξ的數學期望Eξ= ,方差Dξ=
,求n、p的值;
(2)顧客乙消費280元,并按規則參與了活動,他獲得返券的金額記為η(元).求隨機變量η的分布列和數學期望.
指針位置 | A區域 | B區域 | C區域 |
返券金額(單位:元) | 60 | 30 | 0 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有能力互異的3人應聘同一公司,他們按照報名順序依次接受面試,經理決定“不錄用第一個接受面試的人,如果第二個接受面試的人比第一個能力強,就錄用第二個人,否則就錄用第三個人”,記該公司錄用到能力最強的人的概率為p,錄用到能力中等的人的概率為q,則(p,q)=( )
A.( ,
)
B.( ,
)
C.( ,
)
D.( ,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x3+ax2﹣a2x+3.
(1)若a=2,求f(x)在[﹣1,2]上的最值;
(2)若f(x)在(﹣ ,1)上是減函數,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的長軸長為
,且橢圓
與圓
:
的公共弦長為
.
(1)求橢圓的方程.
(2)經過原點作直線(不與坐標軸重合)交橢圓于
,
兩點,
軸于點
,點
在橢圓
上,且
,求證:
,
,
三點共線..
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com