精英家教網 > 高中數學 > 題目詳情

【題目】選修4-4:坐標系與參數方程

已知曲線的極坐標方程為,以極點為平面直角坐標系的原點,極軸為的正半軸,建立平面直角坐標系.

(1)若曲線為參數)與曲線相交于兩點,求;

(2)若是曲線上的動點,且點的直角坐標為,求的最大值.

【答案】(1)(2)

【解析】試題分析:(1)利用極坐標與平面直角坐標系的轉化,可得的方程,再進一步將的參數方程轉化,將直線參數方程與圓方程聯立,利用直線方程參數的幾何意義,再結合韋達定理可得的值; (2)在曲線上,利用圓的參數方程,將轉化成一個三角函數式,利用三角函數內容可求最大值.

試題解析:(1)化為直角坐標方程為

為參數)可化為為參數),

代入,得的,化簡得,

對應的參數為,則,所以.

(2)在曲線上,設為參數)

,則,

那么,

所以.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知﹣3≤log x≤﹣ ,求函數f(x)=log2 log2 的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解甲、乙兩個班級某次考試的數學成績(單位:分),從甲、乙兩個班級中分別隨機抽取5名學生的成績作樣本,如圖是樣本的莖葉圖,規定:成績不低于120分時為優秀成績.

(1)從甲班的樣本中有放回的隨機抽取2個數據,求其中只有一個優秀成績的概率;
(2)從甲、乙兩個班級的樣本中分別抽取2名學生的成績,記獲優秀成績的總人數為X,求X的分布列.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列的前項和為,,),數列滿足:,且).

(Ⅰ)求數列的通項公式;

(Ⅱ)求證:數列為等比數列;

(Ⅲ)求數列的前項和的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)= ,則滿足f(f(a))=2fa的a的取值范圍是(
A.[ ,1]
B.[0,1]
C.[ ,+∞)
D.[1,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設f(x)=|x+1|+|x﹣1|.
(1)求f(x)≤x+2的解集;
(2)若不等式f(x)≤log2(a2﹣4a+12)對任意實數a恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某地建一座橋,兩端的橋墩已建好,這兩墩相距m米,余下的工程只需要建兩端橋墩之間的橋面和橋墩.經預測一個橋墩的工程費用為256萬元,距離為x米的相鄰兩墩之間的橋面工程費用為(2+ )x萬元.假設橋墩等距離分布,所有橋墩都視為點,且不考慮其他因素,記余下工程的費用為y萬元.假設需要新建n個橋墩.
(1)寫出n關于x的函數關系式;
(2)寫出y關于x的函數關系式;
(3)當m=640米時,需新建多少個橋墩才能使y最?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設a>1,函數f(x)=logax在區間[a,2a]上的最大值與最小值之差為 ,則a=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線C1的參數方程為 (θ為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=4sinθ.
(1)把C1的參數方程化為極坐標方程;
(2)求C1與C2交點所在直線的極坐標方程.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视