【題目】《數書九章》三斜求積術:“以小斜冪,并大斜冪,減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪,減上,余四約一,為實,一為從隅,開平方得積”.秦九韶把三角形的三條邊分別稱為小斜、中斜和大斜,“術”即方法.以,
,
,
分別表示三角形的面積,大斜,中斜,小斜;
,
,
分別為對應的大斜,中斜,小斜上的高;則
.若在
中
,
,
,根據上述公式,可以推出該三角形外接圓的半徑為__________.
【答案】
【解析】根據題意可知: ,故設
,由
代入
可得
,由余弦定理可得cosA=
,所以由正弦定理得三角形外接圓半徑為
【題型】填空題
【結束】
17
【題目】在等差數列中,已知公差
,
,且
,
,
成等比數列.
(1)求數列的通項公式
;
(2)求.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,圓
的參數方程為
,(t為參數),在以原點O為極點,
軸的非負半軸為極軸建立的極坐標系中,直線
的極坐標方程為
,
兩點的極坐標分別為.
(1)求圓的普通方程和直線
的直角坐標方程;
(2)點是圓
上任一點,求
面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某小店每天以每份5元的價格從食品廠購進若干份食品,然后以每份10元的價格出售.如果當天賣不完,剩下的食品還可以每份1元的價格退回食品廠處理.
(Ⅰ)若小店一天購進16份,求當天的利潤(單位:元)關于當天需求量
(單位:份,
)的函數解析式;
(Ⅱ)小店記錄了100天這種食品的日需求量(單位:份),整理得下表:
日需求量 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
以100天記錄的各需求量的頻率作為各需求量發生的概率.
(i)小店一天購進16份這種食品,表示當天的利潤(單位:元),求
的分布列及數學期望;
(ii)以小店當天利潤的期望值為決策依據,你認為一天應購進食品16份還是17份?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了適當疏導電價矛盾,保障電力供應,支持可再生能源發展,促進節能減排,安徽省于2012年推出了省內居民階梯電價的計算標準:以一個年度為計費周期、月度滾動使用,第一階梯電量:年用電量2160度以下(含2160度),執行第一檔電價0.5653元/度;第二階梯電量:年用電量2161至4200度(含4200度),執行第二檔電價0.6153元/度;第三階梯電量:年用電量4200度以上,執行第三檔電價0.8653元/度.
某市的電力部門從本市的用電戶中隨機抽取10戶,統計其同一年度的用電情況,列表如下表:
用戶編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
年用電量(度) | 1000 | 1260 | 1400 | 1824 | 2180 | 2423 | 2815 | 3325 | 4411 | 4600 |
(Ⅰ)試計算表中編號為10的用電戶本年度應交電費多少元?
(Ⅱ)現要在這10戶家庭中任意選取4戶,對其用電情況作進一步分析,求取到第二階梯電量的戶數的分布列與期望;
(Ⅲ)以表中抽到的10戶作為樣本估計全市的居民用電情況,現從全市居民用電戶中隨機地抽取10戶,若抽到戶用電量為第一階梯的可能性最大,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
.
(1)當時,討論函數
的單調性;
(2)當時,求證:函數
有兩個不相等的零點
,
,且
.
【答案】(1)見解析;(2)見解析
【解析】試題分析:(1)討論函數單調區間即解導數大于零求得增區間,導數小于零求得減區間(2)函數有兩個不同的零點,先分析函數單調性得零點所在的區間, 在
上單調遞增,在
上單調遞減.∵
,
,
,∴函數
有兩個不同的零點,且一個在
內,另一個在
內.
不妨設,
,要證
,即證
,
在
上是增函數,故
,且
,即證
. 由
,得
,
令
,
,得
在
上單調遞減,∴
,且∴
,
,∴
,即∴
,故
得證
解析:(1)當時,
,得
,
令,得
或
.
當時,
,
,所以
,故
在
上單調遞減;
當時,
,
,所以
,故
在
上單調遞增;
當時,
,
,所以
,故
在
上單調遞減;
所以在
,
上單調遞減,在
上單調遞增.
(2)證明:由題意得,其中
,
由得
,由
得
,
所以在
上單調遞增,在
上單調遞減.
∵,
,
,
∴函數有兩個不同的零點,且一個在
內,另一個在
內.
不妨設,
,
要證,即證
,
因為,且
在
上是增函數,
所以,且
,即證
.
由,得
,
令
,
,
則
.
∵,∴
,
,
∴時,
,即
在
上單調遞減,
∴,且∴
,
,
∴,即∴
,故
得證.
【題型】解答題
【結束】
22
【題目】已知曲線的參數方程為
(
為參數).以平面直角坐標系
的原點
為極點,
軸的正半軸為極軸,取相同的單位長度建立極坐標系,設直線
的極坐標方程為
.
(1)求曲線和直線
的普通方程;
(2)設為曲線
上任意一點,求點
到直線
的距離的最值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
在直角坐標系中,曲線
的參數方程為
(
為參數).以坐標原點為極點,以
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線的普通方程和曲線
的直角坐標方程;
(2)若與
交于
兩點,點
的極坐標為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個四棱錐的三視圖如圖所示,關于這個四棱錐,下列說法正確的是( )
A. 最長的棱長為
B. 該四棱錐的體積為
C. 側面四個三角形都是直角三角形
D. 側面三角形中有且僅有一個等腰三角形
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com