【題目】如圖,在梯形
中,
于
,
.將
沿
折起至
,使得平面
平面
(如圖2),
為線段
上一點.
圖1 圖2
(Ⅰ)求證: ;
(Ⅱ)若為線段
中點,求多面體
與多面體
的體積之比;
(Ⅲ)是否存在一點,使得
平面
?若存在,求
的長.若不存在,請說明理由.
科目:高中數學 來源: 題型:
【題目】某校高三年級50名學生參加數學競賽,根據他們的成績繪制了如圖所示的頻率分布直方圖,已知分數在的矩形面積為
,
求:分數在
的學生人數;
這50名學生成績的中位數
精確到
;
若分數高于60分就能進入復賽,從不能進入復賽的學生中隨機抽取兩名,求兩人來自不同組的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示的幾何體是由以等邊三角形為底面的棱柱被平面
所截而得,已知
平面
為
的中點,
面
.
(1)求的長;
(2)求證:面面
;
(3)求平面與平面
相交所成銳角二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】己知橢圓W:+
=1(a>b>0),直線
:
=
與
軸,
軸的交點分別是橢圓W的焦點與頂點。
(1)求橢圓W的方程;
(2)設直線m:=kx(k≠0)與橢圓W交于P,Q兩點,過點P(
,
)作PC⊥軸,垂足為點C,直線
交橢圓w于另一點R。
①求△PCQ面積的最大值;②求出∠QPR的大小。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】△ABC的內角A,B,C的對邊分別為a,b,c,已知△ABC的面積為
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(題文)已知等差數列{an}的首項a1≠0,前n項和為Sn,且S4+a2=2S3;等比數列{bn}滿足b1=a2,b2=a4.
(1)求證:數列{bn}中的每一項都是數列{an}中的項;
(2)若a1=2,設cn=,求數列{cn}的前n項和Tn;
(3)在(2)的條件下,若有f(n)=log3Tn,求f(1)+f(2)+…+f(n)的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,已知曲線
的參數方程為
,(
為參數),以原點
為極點,
軸的非負半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線的極坐標方程及曲線
的直角坐標方程;
(2)已知曲線交于
兩點,過
點且垂直于
的直線與曲線
交于
兩點,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com